765 resultados para stoichiometry


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The comprehensive study on the coupling of magnetism, electrical polarization and the crystalline lattice with the off-stoichiometric effects in self-doped multiferroic hexagonal h-LuMnxO3±δ (0.92≤x≤1.12) ceramic oxides was carried out for the PhD work. There is a complex coupling of the three ferroic degrees. The cancelation of the magnetic moments of ions in the antiferromagnetic order, electric polarization with specific vortex/antivortex topology and lattice properties have pushed researchers to find out ways to disclose the underlying physics and chemistry of magneto-electric and magneto-elastic couplings of h-RMnO3 multiferroic materials. In this research work, self-doping of Lu-sites or Mn-sites of h-LuMnxO3±δ ceramics prepared via solid state route was done to pave a way for deeper understanding of the antiferromagnetic transition, the weak ferromagnetism often reported in the same crystalline lattices and the ferroelectric properties coupled to the imposed lattice changes. Accordingly to the aim of the PhD thesis, the objectives set for the sintering study in the first chapter on experimental results were two. First, study of sintering off-stoichiometric samples within conditions reported in the bibliography and also extracted from the phase diagrams of the LuMnxO3±δ, with a multiple firings ending with a last high temperature step at 1300ºC for 24 hours. Second, explore longer annealing times of up to 240 hours at the fixed temperature of 1300 ºC in a search for improving the properties of the solid solution under study. All series of LuMnxO3±δ ceramics for each annealing time were characterized to tentatively build a framework enabling comparison of measured properties with results of others available in literature. XRD and Rietveld refinement of data give the evolution the lattice parameters as a function to x. Shrinkage of the lattice parameters with increasing x values was observed, the stability limit of the solid solution being determined by analysis of lattice parameters. The evolution of grain size and presence of secondary phases have been investigated by means of TEM, SEM, EDS and EBSD techniques. The dependencies of grain growth and regression of secondary phases on composition x and time were further characterized. Magnetic susceptibility of samples and magnetic irreversibility were extensively examined in the present work. The dependency of magnetic susceptibility, Neel ordering transition and important magnetic parameters are determined and compared to observation in other multiferroics in the following chapter of the thesis. As a tool of high sensitivity to detect minor traces of the secondary phase hausmannite, magnetic measurements are suggested for cross-checking of phase diagrams. Difficulty of previous studies on interpreting the magnetic anomaly below 43 K in h-RMnO3 oxides was discussed and assigned to the Mn3O4 phase, with supported of the electron microscopy. Magneto-electric coupling where AFM ordering is coupled to dielectric polarization is investigated as a function of x and of sintering condition via frequency and temperature dependent complex dielectric constant measurements in the final chapter of the thesis. Within the limits of solid solubility, the crystalline lattice of off-stoichiometric ceramics was shown to preserve the magneto-electric coupling at TN. It represents the first research work on magneto-electric coupling modified by vacancy doping to author’s knowledge. Studied lattices would reveal distortions at the atomic scale imposed by local changes of x dependent on sintering conditions which were widely inspected by using TEM/STEM methods, complemented with EDS and EELS spectroscopy all together to provide comprehensive information on cross coupling of distortions, inhomogeneity and electronic structure assembled and discussed in a specific chapter. Internal interfaces inside crystalline grains were examined. Qualitative explanations of the measured magnetic and ferroelectric properties were established in relation to observed nanoscale features of h-LuMnxO3±δ ceramics. Ferroelectric domains and topological defects are displayed both in TEM and AFM/PFM images, the later technique being used to look at size, distribution and switching of ferroelectric domains influenced by vacancy doping at the micron scale bridging to complementary TEM studies on the atomic structure of ferroelectric domains. In support to experimental study, DFT simulations using Wien2K code have been carried out in order to interpret the results of EELS spectra of O K-edge and to obtain information on the cation hybridization to oxygen ions. The L3,2 edges of Mn is used to access the oxidation state of the Mn ions inside crystalline grains. In addition, rehybridization driven ferroelectricity is also evaluated by comparing the partial density of states of the orbitals of all ions of the samples, also the polarization was calculated and correlated to the off-stoichiometric effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deposition of indium tin oxide (ITO) among various transparent conductive materials on flexible organic substrates has been intensively investigated among academics and industrials for a whole new array of imaginative optoelectronic products. One critical challenge coming with the organic materials is their poor thermal endurances, considering that the process currently used to produce industry-standard ITO usually involves relatively high substrate temperature in excess of 200°C and post-annealing. A lower processing temperature is thus demanded, among other desires of high deposition rate, large substrate area, good uniformity, and high quality of the deposited materials. For this purpose, we developed an RF-assisted closed-field dual magnetron sputtering system. The “prototype” system consists of a 3-inch unbalanced dual magnetron operated at a closed-field configuration. An RF coil was fabricated and placed between the two magnetron cathodes to initiate a secondary plasma. The concept is to increase the ionization faction with the RF enhancement and utilize the ion energy instead of thermal energy to facilitate the ITO film growth. The closed-field unbalanced magnetrons create a plasma in the intervening region rather than confine it near the target, thus achieving a large-area processing capability. An RF-compensated Langmuir probe was used to characterize and compare the plasmas in mirrored balanced and closed-field unbalanced magnetron configurations. The spatial distributions of the electron density ne and electron temperature Te were measured. The density profiles reflect the shapes of the plasma. Rather than intensively concentrated to the targets/cathodes in the balanced magnetrons, the plasma is more dispersive in the closed-field mode with a twice higher electron density in the substrate region. The RF assistance significantly enhances ne by one or two orders of magnitude higher. The effect of various other parameters, such as pressure, on the plasma was also studied. The ionization fractions of the sputtered atoms were measured using a gridded energy analyzer (GEA) combined with a quartz crystal microbalance (QCM). The presence of the RF plasma effectively increases the ITO ionization fraction to around 80% in both the balanced and closed-field unbalanced configurations. The ionization fraction also varies with pressure, maximizing at 5-10 mTorr. The study of the ionization not only facilitates understanding the plasma behaviors in the RF-assisted magnetron sputtering, but also provides a criterion for optimizing the film deposition process. ITO films were deposited on both glass and plastic (PET) substrates in the 3-inch RF-assisted closed-field magnetrons. The electrical resistivity and optical transmission transparency of the ITO films were measured. Appropriate RF assistance was shown to dramatically reduce the electrical resistivity. An ITO film with a resistivity of 1.2×10-3 Ω-cm and a visible light transmittance of 91% was obtained with a 225 W RF enhancement, while the substrate temperature was monitored as below 110°C. X-ray photoelectron spectroscopy (XPS) was employed to confirm the ITO film stoichiometry. The surface morphology of the ITO films and its effect on the film properties were studied using atomic force microscopy (AFM). The prototype of RF-assisted closed-field magnetron was further extended to a larger rectangular shaped dual magnetron in a flat panel display manufacturing system. Similar improvement of the ITO film conductivities by the auxiliary RF was observed on the large-area PET substrates. Meanwhile, significant deposition rates of 25-42 nm/min were achieved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The thesis aims to exploit properties of thin films for applications such as spintronics, UV detection and gas sensing. Nanoscale thin films devices have myriad advantages and compatibility with Si-based integrated circuits processes. Two distinct classes of material systems are investigated, namely ferromagnetic thin films and semiconductor oxides. To aid the designing of devices, the surface properties of the thin films were investigated by using electron and photon characterization techniques including Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), grazing incidence X-ray diffraction (GIXRD), and energy-dispersive X-ray spectroscopy (EDS). These are complemented by nanometer resolved local proximal probes such as atomic force microscopy (AFM), magnetic force microscopy (MFM), electric force microscopy (EFM), and scanning tunneling microscopy to elucidate the interplay between stoichiometry, morphology, chemical states, crystallization, magnetism, optical transparency, and electronic properties. Specifically, I studied the effect of annealing on the surface stoichiometry of the CoFeB/Cu system by in-situ AES and discovered that magnetic nanoparticles with controllable areal density can be produced. This is a good alternative for producing nanoparticles using a maskless process. Additionally, I studied the behavior of magnetic domain walls of the low coercivity alloy CoFeB patterned nanowires. MFM measurement with the in-plane magnetic field showed that, compared to their permalloy counterparts, CoFeB nanowires require a much smaller magnetization switching field , making them promising for low-power-consumption domain wall motion based devices. With oxides, I studied CuO nanoparticles on SnO2 based UV photodetectors (PDs), and discovered that they promote the responsivity by facilitating charge transfer with the formed nanoheterojunctions. I also demonstrated UV PDs with spectrally tunable photoresponse with the bandgap engineered ZnMgO. The bandgap of the alloyed ZnMgO thin films was tailored by varying the Mg contents and AES was demonstrated as a surface scientific approach to assess the alloying of ZnMgO. With gas sensors, I discovered the rf-sputtered anatase-TiO2 thin films for a selective and sensitive NO2 detection at room temperature, under UV illumination. The implementation of UV enhances the responsivity, response and recovery rate of the TiO2 sensor towards NO2 significantly. Evident from the high resolution XPS and AFM studies, the surface contamination and morphology of the thin films degrade the gas sensing response. I also demonstrated that surface additive metal nanoparticles on thin films can improve the response and the selectivity of oxide based sensors. I employed nanometer-scale scanning probe microscopy to study a novel gas senor scheme consisting of gallium nitride (GaN) nanowires with functionalizing oxides layer. The results suggested that AFM together with EFM is capable of discriminating low-conductive materials at the nanoscale, providing a nondestructive method to quantitatively relate sensing response to the surface morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When a liquid is irradiated with ultrasound, acoustic cavitation (the formation, growth, and implosive collapse of bubbles in liquids irradiated with ultrasound) generally occurs. This is the phenomenon responsible for the driving of chemical reactions (sonochemistry) and the emission of light (sonoluminescence). The implosive collapse of bubbles in liquids results in an enormous concentration of sound energy into compressional heating of the bubble contents. Therefore, extreme chemical and physical conditions are generated during cavitation. The study of multibubble sonoluminescence (MBSL) and single-bubble sonoluminescence (SBSL) in exotic liquids such as sulfuric acid (H2SO4) and phosphoric acid (H3PO4) leads to useful information regarding the intracavity conditions during bubble collapse. Distinct sonoluminescing bubble populations were observed from the intense orange and blue-white emissions by doping H2SO4 and H3PO4 with sodium salts, which provides the first experimental evidence for the injected droplet model over the heated-shell model for cavitation. Effective emission temperatures measured based on excited OH• and PO• emission indicate that there is a temperature inhomogeneity during MBSL in 85% H3PO4. The formation of a temperature inhomogeneity is due to the existence of different cavitating bubble populations: asymmetric collapsing bubbles contain liquid droplets and spherical collapsing bubbles do not contain liquid droplets. Strong molecular emission from SBSL in 65% H3PO4 have been obtained and used as a spectroscopic probe to determine the cavitation temperatures. It is found that the intracavity temperatures are dependent on the applied acoustic pressures and the thermal conductivities of the dissolved noble gases. The chemical and physical effects of ultrasound can be used for materials synthesis. Highly reactive species, including HO2•, H•, and OH• (or R• after additives react with OH•), are formed during aqueous sonolysis as a consequence of the chemical effects of ultrasound. Reductive species can be applied to synthesis of water-soluble fluorescent silver nanoclusters in the presence of a suitable stabilizer or capping agent. The optical and fluorescent properties of the Ag nanoclusters can be easily controlled by the synthetic conditions such as the sonication time, the stoichiometry of the carboxylate groups to Ag+, and the polymer molecular weight. The chemical and physical effects of ultrasound can be combined to prepare polymer functionalized graphenes from graphites and a reactive solvent, styrene. The physical effects of ultrasound are used to exfoliate graphites to graphenes while the chemical effects of ultrasound are used to induce the polymerization of styrene which can then functionalize graphene sheets via radical coupling. The prepared polymer functionalized graphenes are highly stable in common organic solvents like THF, CHCl3, and DMF. Ultrasonic spray pyrolysis (USP) is used to prepare porous carbon spheres using energetic alkali propiolates as the carbon precursors. In this synthesis, metal salts are generated in situ, introducing porous structures into the carbon spheres. When different alkali salts or their mixtures are used as the precursor, carbon spheres with different morphologies and structures are obtained. The different precursor decomposition pathways are responsible for the observed structural difference. Such prepared carbon materials have high surface area and are thermally stable, making them potentially useful for catalytic supports, adsorbents, or for other applications by integrating other functional materials into their pores.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photoemission techniques, utilizing a synchrotron light source, were used to analyze the clean (100) surfaces of the zinc-blende semiconductor materials CdTe and InSb. Several interfacial systems involving the surfaces of these materials were also studied, including the CdTe(lOO)-Ag interface, the CdTe(lOO)-Sb system, and the InSb(lOO)-Sn interface. High-energy electron diffraction was also employed to acquire information about of surface structure. A one-domain (2xl) structure was observed for the CdTe(lOO) surface. Analysis of photoemission spectra of the Cd 4d core level for this surface structure revealed two components resulting from Cd surface atoms. The total intensity of these components accounts for a full monolayer of Cd atoms on the surface. A structural model is discussed commensurate with these results. Photoemission spectra of the Cd and Te 4d core levels indicate that Ag or Sb deposited on the CdTe(l00)-(2xl) surface at room temperature do not bound strongly to the surface Cd atoms. The room temperature growth characteristics for these two elements on the CdTe(lOO)-(2xl) are discussed. The growth at elevated substrate temperatures was also studied for Sb deposition. The InSb(lOO) surface differed from the CdTe(lOO) surface. Using molecular beam epitaxy, several structures could be generated for the InSb(lOO) surface, including a c(8x2), a c(4x4), an asymmetric (lx3), a symmetric (lx3), and a (lxl). Analysis of photoemission intensities and line shapes indicates that the c(4x4) surface is terminated with 1-3/4 monolayers of Sb atoms. The c(8x2) surface is found to be terminated with 3/4 monolayer of In atoms. Structural models for both of these surfaces are proposed based upon the photoemission results and upon models of the similar GaAs(lOO) structures. The room temperature growth characteristics of grey Sn on the lnSb(lOO)-c(4x4) and InSb(l00)-c(8x2) surfaces were studied with photoemission. The discontinuity in the valence band maximum for this semiconductor heterojunction system is measured to be 0.40 eV, independent of the starting surface structure and stoichiometry. This result is reconciled with theoretical predictions for heterostructure behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O objectivo principal deste trabalho foi estudar as propriedades e comportamento de polioxotungstatos (POM) do tipo Keggin com interesse em catálise oxidativa. Os estudos efectuados centraram-se no comportamento electroquímico dos aniões em meio não aquoso, na estabilidade das suas estruturas em diferentes meios, na sua capacidade de catalisar a oxidação de diferentes substratos orgânicos e na sua eficácia em oxidar, de forma selectiva, um modelo não fenólico da lenhina. Efectuou-se, igualmente, o estudo estrutural de diversos aniões pela técnica de EXAFS. Neste trabalho, prepararam-se e caracterizaram-se alguns dos sais de tetra-n-butilamónio (TBA) dos polioxotungstatos estudados: compostos de Keggin, TBAx[XW12O40], lacunares, TBAxHy[XW11O39], mono-substituídos, TBAxHy[XW11M(H2O)O39]·nH2O, com X= P e Si e M = CoII, NiII, ZnII, CuIl, RuIII, MnIII e FeIII e os compostos com mistura de átomos adenda TBAx[XW11VO40]·nH2O (X = P e Si). Seleccionou-se este conjunto de polioxotungstatos de forma a efectuar-se um estudo comparativo da influência da natureza do heteroátomo central (P e Si) e dos metais de transição M nas propriedades estudadas. O conjunto de sais de TBA dos silicotungstatos estudados mostraram ser isoestruturais, apresentando a mesma estrutura dos fosfotungstatos análogos. O comportamento electroquímico dos polioxotungstatos foi estudado em soluções de acetonitrilo por voltametria cíclica e electrólise a potencial controlado. Verificou-se a ocorrência de vários processos mono-electrónicos de oxi-redução, reversíveis ou quasi-reversíveis, associados aos átomos de WVI/V e a alguns dos metais de transição. Os metais em estado de oxidação +3 reduziram-se mais facilmente do que os átomos de WVI. O metal CuII apresentou um comportamento diferente dos outros metais de transição. Este metal, na estrutura do POM, reduziu-se a CuI, proporcionando a observação do anião [PW11CuIO39]6- pela primeira vez. A redução posterior do CuI conduziu à formação de Cu0, que se depositou na superfície do eléctrodo. A re-oxidação do cobre a CuII conduziu à reconstituição da estrutura do POM, nas condições estudadas. Constatou-se que a ocorrência de protões na fórmula molecular dos POMs influenciou o seu comportamento electroquímico. Para os compostos que apresentam protões, a redução dos átomos de tungsténio ocorreu a potenciais menos negativos do que para aqueles que não apresentam protões na sua fórmula. Para os primeiros observou-se a transferência global de um maior número de electrões no mesmo intervalo de potencial, originando soluções fortemente azuladas. Quando os catiões tetra-n-butilamónio foram substituídos por catiões de menor dimensão, como Li+ e Na+, ocorreu a formação de pares iónicos com os polianiões [PW12O40]3- e [SiW11VO40]5-, originando um aumento do potencial de redução. Não houve evidência da formação de pares iónicos com os catiões TBA+. Este foi o primeiro estudo sistemático do comportamento electroquímico dos aniões lacunares e mono-substituídos em meio não aquoso. Estudou-se a estrutura dos polioxotungstatos em sais de TBA e em soluções de acetonitrilo. A aplicação da técnica de EXAFS ao estudo deste tipo de compostos em solução foi realizada pela primeira vez. Pela análise estrutural nos sólidos verificou-se que, a natureza do metal de transição M e do átomo central X, na estrutura do POM, influenciam o tamanho dos vários octaedros que o constituem. Não se observaram diferenças significativas nas estruturas dos polianiões em solução. A estabilidade da estrutura dos polioxometalatos na presença de um excesso de H2O2, em soluções de acetonitrilo/H2O foi analisada por espectroscopia de absorção de EXAFS, RMN de 31P, IV e espectrofotometria de absorção no UV-Vis. De uma forma geral, os POMs em que o átomo central da estrutura é o Si apresentaram maior estabilidade do que os POMs correspondentes com átomo de P no centro. Em solução de acetonitrilo, na ausência de H2O2, todos os aniões mostraram ser estáveis durante vários dias. Em solução, na presença de H2O2 em excesso (H2O2/POM = 1300), o anião lacunar [PW11O39]7- não é estável, transformando-se no anião de Venturello, {PO4[W(O)(O2)2]4}3-, após a formação de [PW12O40]3-, como produto intermediário. Em relação aos aniões substituídos [PW11M(H2O)O39]p-, M = MnIII, RuIII, FeIII, CoII e ZnII, verificou-se o seguinte na presença de H2O2: os aniões com MnIII e CoII transformaram-se no anião de Keggin, [PW12O40]3-. Os aniões de RuIII e FeIII mantiveram as suas estruturas e o anião de ZnII decompôs-se em {HPO4[W(O)(O2)2]2}2- e fosfato. Para estes casos de não estabilidade estrutural, o processo de decomposição foi mais rápido na presença de maiores conteúdos de água. Pela análise de EXAFS, na presença de um menor excesso de H2O2 (H2O2/POM = 70) e apenas 8% de parte aquosa, verificou-se que os aniões substituídos por MnIII mantiveram a sua estrutura, embora o ligando H2O, coordenado ao Mn, tivesse sido substituído por um grupo oxo no polianião [SiW11Mn(H2O)O39]5-, e por um grupo peroxo no polianião [PW11Mn(H2O)O39]4-. O anião com RuIII, nestas condições, também mostrou substituir o seu ligando H2O por um grupo peroxo ou hidrogenoperoxo. Os polioxotungstatos mono-substituídos e lacunares mostraram ser catalisadores eficientes para a oxidação de cis-cicloocteno, geraniol e ciclooctano com H2O2. A maior novidade deste trabalho residiu na actividade catalítica apresentada pelos silicotungstatos estudados, contrariando o que é referido na literatura. Outro aspecto inovador foi o elevado valor de conversão obtido para a oxidação de ciclooctano. Este substrato foi oxidado com 74% de conversão, após 2h de reacção e com 80% de selectividade para o hidroperóxido de ciclooctilo, na presença do anião [PW11Fe(H2O)O39]4-. Os restantes produtos de reacção foram o ciclooctanol e a ciclooctanona. Os silicotungstatos apresentaram maior selectividade para o hidroperóxido de ciclooctilo do que os fosfotungstatos. O geraniol foi completamente oxidado após 3h de reacção, com 82% de selectividade para o 2,3-epoxigeraniol, na presença do anião [PW11Mn(H2O)O39]4-. O cis-cicloocteno foi oxidado ao seu epóxido, com 92% de conversão ao fim de 5h de reacção, na presença do anião lacunar [PW11O39]7-. O estudo da capacidade oxidativa do anião [SiW11VO40]5- foi analisada utilizando-se um modelo não fenólico da lenhina, a anisoína. Estudaram-se as condições favoráveis à obtenção de uma reacção selectiva para o anisilo, de forma a poder estudar-se a cinética da reacção. A estequiometria da reacção mostrou ser de 1:2 anisoína/POM. As ordens de reacção foram determinadas pelo método das velocidades iniciais e, a partir destes resultados, conheceu-se que o POM não estava envolvido no passo que limita a velocidade da reacção, sendo esta limitada pela transformação da anisoína. O estudo realizado sobre o efeito isotópico sugeriu que o passo que limitou a velocidade de reacção correspondeu à enolação da anisoína. Desta forma, observou-se pela primeira vez, que o POM oxida um modelo não fenólico da lenhina por via de enolação.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ropivacaine (RVC) is an enantiomerically pure local anesthetic (LA) largely used in surgical procedures, which presents physico-chemical and therapeutic properties similar to those of bupivacaine (BPV), but associated to less systemic toxicity This study focuses on the development and pharmacological evaluation of a RVC in 2-hydroxypropyl-beta-cyclodextrin (HP-P-CD) inclusion complex. Phase-solubility diagrams allowed the determination of the association constant between RVC and HP-beta-CD (9.46 M-1) and showed an increase on RVC solubility upon complexation. Release kinetics revealed a decrease on RVC release rate and reduced hemolytic effects after complexation. (onset at 3.7 mM and 11.2 mM for RVC and RVCHP-beta-CD, respectively) were observed. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and X-ray analysis (X-ray) showed the formation and the morphology of the complex. Nuclear magnetic resonance (NMR) and job-plot experiments afforded data regarding inclusion complex stoichiometry (1:1) and topology. Sciatic nerve blockade studies showed that RVCHP-beta-CD was able to reduce the latency without increasing the duration of motor blockade, but prolonging the duration and intensity of the sensory blockade (p < 0.001) induced by the LA in mice. These results identify the RVCHP-beta-CD complex as an effective novel approach to enhance the pharmacological effects of RVC, presenting it as a promising new anesthetic formulation. (c) 2007 Elsevier B.V All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of 4-nerolidylcatechol (4-NRC), a potent antioxidant agent, and 2-hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated by the solubility method using Fourier transform infrared (FTIR) methods in addition to UV-Vis, (1)H-nuclear magnetic resonance (NMR) spectroscopy and molecular modeling. The inclusion complexes were prepared using grinding, kneading and freeze-drying methods. According to phase solubility studies in water a B(S)-type diagram was found, displaying a stoichiometry complexation of 2:1 (drug:host) and stability constant of 6494 +/- A 837 M(-1). Stoichiometry was established by the UV spectrophotometer using Job's plot method and, also confirmed by molecular modeling. Data from (1)H-NMR, and FTIR, experiments also provided formation evidence of an inclusion complex between 4-NRC and HP-beta-CD. 4-NRC complexation indeed led to higher drug solubility and stability which could probably be useful to improve its biological properties and make it available to oral administration and topical formulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Química, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main aim of this study is to apply synchrotron radiation techniques for the study of hydrated cement pastes. In particular, the tetracalcium aluminoferrite phase, C4AF in cement nomenclature, is the major iron-containing phase in Ordinary Portland Cement (OPC) and in iron rich belite calcium sulfoaluminate cements. In a first study, the hydration mechanism of pure tetracalcium aluminoferrite phase with water-to-solid ratio of 1.0 has been investigated by HR-SXRPD (high resolution synchrotron X-ray powder diffraction). C4AF in the presence of water hydrates to form mainly an iron-containing hydrogarnet-type (katoite) phase, C3A0.84F0.16H6, as single crystalline phase. Its crystal structure and stoichiometry were determined by the Rietveld method and the final disagreement factors were RWP=8.1% and RF=4.8% [1]. As the iron content in the product is lower than that in C4AF, it is assumed that part of the iron also goes to an amorphous iron rich gel, like the hydrated alumina-type gel, as hydration proceeds. Further results from the high-resolution study will be discussed. In a second study, the behavior of pure and iron-containing katoites (C3AH6 and C3A0.84F0.16H6) under pressure have been analyzed by SXRPD using a diamond anvil cell (DAC) and then their bulk moduli were determined. The role of the pressure transmitting medium (PTM) has also been studied. In this case, silicone oil as well as methanol/ethanol mixtures have been used as PTM. Some “new peaks” were detected in the pattern for C3A0.84F0.16H6 as pressure increases, when using ethanol/methanol as PTM. These new peaks were still present at ambient pressure after releasing the applied pressure. They may correspond to crystalline nordstrandite or doyleite from the crystallization of amorphous aluminium hydroxide. The results from the high-pressure study will also be discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An increased consideration of sustainability throughout society has resulted in a surge of research investigating sustainable alternatives to existing construction materials. A new binder system, called a geopolymer, is being investigated to supplement ordinary portland cement (OPC) concrete, which has come under scrutiny because of the CO2 emissions inherent in its production. Geopolymers are produced from the alkali activation of a powdered aluminosilicate source by an alkaline solution, which results in a dense three-dimensional matrix of tetrahedrally linked aluminosilicates. Geopolymers have shown great potential as a building construction material, offering similar mechanical and durability properties to OPC. Additionally, geopolymers have the added value of a considerably smaller carbon footprint than OPC. This research considered the compressive strength, microstructure and composition of geopolymers made from two types of waste glass with varying aluminum contents. Waste glass shows great potential for mainstream use in geopolymers due to its chemical and physical homogeneity as well as its high content of amorphous silica, which could eliminate the need for sodium silicate. However, the lack of aluminum is thought to negatively affect the mechanical performance and alkali stability of the geopolymer system. Mortars were designed using various combinations of glass and metakaolin or fly ash to supplement the aluminum in the system. Mortar made from the high-Al glass (12% Al2O3) reached over 10,000 psi at six months. Mortar made from the low-Al glass (<1% Al2O3) did not perform as well and remained sticky even after several weeks of curing, most likely due to the lack of Al which is believed to cause hardening in geopolymers. A moderate metakaolin replacement (25-38% by mass) was found to positively affect the compressive strength of mortars made with either type of glass. Though the microstructure of the mortar was quite indicative of mechanical performance, composition was also found to be important. The initial stoichiometry of the bulk mixture was maintained fairly closely, especially in mixtures made with fine glass. This research has shown that glass has great potential for use in geopolymers, when care is given to consider the compositional and physical properties of the glass in mixture design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loss of large-bodied herbivores and/or top predators has been associated with large-scale changes in terrestrial, freshwater, and marine ecosystems around the world. Understanding the consequences of these declines has been hampered by a lack of studies in relatively pristine systems. To fill this gap, I investigated the dynamics of the relatively pristine seagrass ecosystem of Shark Bay, Australia. I began by examining the seagrass species distributions, stoichiometry, and patterns of nutrient limitation across the whole of Shark Bay. Large areas were N-limited, P-limited, or limited by factors other than nutrients. Phosphorus-limitation was centered in areas of restricted water exchange with the ocean. Nutrient content of seagrasses varied seasonally, but the strength of seasonal responses were species-specific. Using a cafeteria-style experiment, I found that fast-growing seagrass species, which had higher nutrient content experienced higher rates of herbivory than slow-growing species that are dominant in the bay but have low nutrient content. Although removal rates correlated well with nutrient content at a broad scale, within fast-growing species removal rates were not closely tied to N or P content. Using a combination of stable isotope analysis and animal borne video, I found that green turtles (Chelonia mydas) – one of the most abundant large-bodied herbivores in Shark Bay – appear to assimilate little energy from seagrasses at the population level. There was, however, evidence of individual specialization in turtle diets with some individuals foraging largely on seagrasses and others feeding primarily on macroalgae and gelatinous macroplankton. Finally, I used exclusion cages, to examine whether predation-sensitive habitat shifts by megagrazers (green turtles, dugongs) transmitted a behavior-mediated trophic cascade (BMTC) between sharks and seagrasses. In general, data were consistent with predictions of a behavior-mediated trophic cascade. Megaherbivore impacts on seagrasses were large only in the microhabitat where megaherbivores congregate to reduce predation risk. My study highlights the importance of large herbivores in structuring seagrass communities and, more generally, suggests that roving top predators likely are important in structuring communities - and possibly ecosystems - through non-consumptive pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Development of methodologies for the controlled chemical assembly of nanoparticles into plasmonic molecules of predictable spatial geometry is vital in order to harness novel properties arising from the combination of the individual components constituting the resulting superstructures. This paper presents a route for fabrication of gold plasmonic structures of controlled stoichiometry obtained by the use of a di-rhenium thio-isocyanide complex as linker molecule for gold nanocrystals. Correlated scanning electron microscopy (SEM)—dark-field spectroscopy was used to characterize obtained discrete monomer, dimer and trimer plasmonic molecules. Polarization-dependent scattering spectra of dimer structures showed highly polarized scattering response, due to their highly asymmetric D∞h geometry. In contrast, some trimer structures displayed symmetric geometry (D3h), which showed small polarization dependent response. Theoretical calculations were used to further understand and attribute the origin of plasmonic bands arising during linker-induced formation of plasmonic molecules. Theoretical data matched well with experimentally calculated data. These results confirm that obtained gold superstructures possess properties which are a combination of the properties arising from single components and can, therefore, be classified as plasmonic molecules

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assembly of outer membranes of the cell wall of Gram-negative bacteria and of various organelles of eukaryotic cells requires the evolutionarily conserved β-barrel-assembly machinery (BAM) complex. This thesis describes the biochemical and biophysical properties of the periplasmic domain of the β-barrel assembly machinery protein A (PD-BamA) of the E. coli BAM complex, its effect on insertion and folding of the Outer membrane protein A (OmpA) into lipid bilayers and the identification of regions of PD-BamA that may be involved in protein-protein interactions. The secondary structure of PD-BamA in mixed lipid bilayers, analyzed by Circular dichroism (CD) spectroscopy, contained less β-sheet at an increased content of phosphatidylglycerol (PG) in the lipid membrane. This result showed membrane binding, albeit only in the presence of negatively charged lipids. Fluorescence spectroscopy demonstrated that PD-BamA only binds to lipid bilayers containing the negatively charged DOPG, confirming the results of CD spectroscopy. PD-BamA did not bind to zwitterionic but overall neutral lipid bilayers. PD-BamA bound to OmpA at a stoichiometry of 1:1. PD-BamA strongly facilitated insertion and folding of OmpA into lipid membranes. Kinetics of PD-BamA mediated folding of OmpA was well described by two parallel folding processes, a fast folding process and a slow folding process, differing by 2-3 orders of magnitude in their rate constants. The folding yields of OmpA depended on the concentration of lipid membranes and also on the lipid head groups. The presence of PD-BamA resulted in increased folding yields of OmpA in negatively charged DOPG, but PD-BamA did not affect the folding kinetics of OmpA into bilayers of zwitterionic but overall neutral lipids. The efficiency of folding and insertion of OmpA into lipid bilayers strongly depended on the ratio PD-BamA/OmpA and was optimal at equimolar concentrations of PD-BamA and OmpA. To examine complexes of unfolded OmpA with PD-BamA in more detail, site-directed spectroscopy was used to explore contact regions in both, PD-BamA and OmpA. Similarly, contact regions were also investigated for another protein complex formed by PD-BamA and the lipoprotein BamD. The obtained data suggest, that the site of interaction on PD-BamA for OmpA might be oriented towards the exterior environment away from the preceding POTRA domains, but that PD-BamA is oriented with its short α-helix α1 of POTRA domain 5 towards the C-terminal end of BamD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogen is considered as an appealing alternative to fossil fuels in the pursuit of sustainable, secure and prosperous growth in the UK and abroad. However there exists a persisting bottleneck in the effective storage of hydrogen for mobile applications in order to facilitate a wide implementation of hydrogen fuel cells in the fossil fuel dependent transportation industry. To address this issue, new means of solid state chemical hydrogen storage are proposed in this thesis. This involves the coupling of LiH with three different organic amines: melamine, urea and dicyandiamide. In principle, thermodynamically favourable hydrogen release from these systems proceeds via the deprotonation of the protic N-H moieties by the hydridic metal hydride. Simultaneously hydrogen kinetics is expected to be enhanced over heavier hydrides by incorporating lithium ions in the proposed binary hydrogen storage systems. Whilst the concept has been successfully demonstrated by the results obtained in this work, it was observed that optimising the ball milling conditions is central in promoting hydrogen desorption in the proposed systems. The theoretical amount of 6.97 wt% by dry mass of hydrogen was released when heating a ball milled mixture of LiH and melamine (6:1 stoichiometry) to 320 °C. It was observed that ball milling introduces a disruption in the intermolecular hydrogen bonding network that exists in pristine melamine. This effect extends to a molecular level electron redistribution observed as a function of shifting IR bands. It was postulated that stable phases form during the first stages of dehydrogenation which contain the triazine skeleton. Dehydrogenation of this system yields a solid product Li2NCN, which has been rehydrogenated back to melamine via hydrolysis under weak acidic conditions. On the other hand, the LiH and urea system (4:1 stoichiometry) desorbed approximately 5.8 wt% of hydrogen, from the theoretical capacity of 8.78 wt% (dry mass), by 270 °C accompanied by undesirable ammonia and trace amount of water release. The thermal dehydrogenation proceeds via the formation of Li(HN(CO)NH2) at 104.5 °C; which then decomposes to LiOCN and unidentified phases containing C-N moieties by 230 °C. The final products are Li2NCN and Li2O (270 °C) with LiCN and Li2CO3 also detected under certain conditions. It was observed that ball milling can effectively supress ammonia formation. Furthermore results obtained from energetic ball milling experiments have indicated that the barrier to full dehydrogenation between LiH and urea is principally kinetic. Finally the dehydrogenation reaction between LiH and dicyandiamide system (4:1 stoichiometry) occurs through two distinct pathways dependent on the ball milling conditions. When ball milled at 450 RPM for 1 h, dehydrogenation proceeds alongside dicyandiamide condensation by 400 °C whilst at a slower milling speed of 400 RPM for 6h, decomposition occurs via a rapid gas desorption (H2 and NH3) at 85 °C accompanied by sample foaming. The reactant dicyandiamide can be generated by hydrolysis using the product Li2NCN.