798 resultados para spinel-lherzolite


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep basement penetration during Legs 69 and 70 at Hole 504B in the Panama Basin allowed the recovery of a 561.5-meter sequence of basaltic pillows, thin flows, and breccias interspersed with thick massive flows. The lavas, which are aphyric to moderately plagioclase-olivine-clinopyroxene phyric, are petrologically indistinguishable from typical mid-ocean-ridge basalts (MORB). Some units are distinctive in that they carry accessory chrome-spinel microphenocrysts or emerald green clinopyroxene phenocrysts. Major and trace element analyses were carried out on 67 samples using X-ray fluorescence techniques. The basalts resemble normal MORB in terms of major elements. However, the trace element analyses show that most of the basalts are characterized by very strong depletion in the more incompatible elements compared with, for instance, normal (N type) MORB from the Atlantic at 22°N. Interdigitated with these units are one or two units that have distinctly higher incompatible element concentrations similar to those in basalts of the transitional (T) type from the Reykjanes Ridge (63°N in the Mid-Atlantic Ridge). All the basalts appear to have undergone some high-level crystal fractionation, although this has not proceeded to the extent of yielding ferrobasalts as it has at the adjacent Galapagos Spreading Center or along the East Pacific Rise. The magnetic anomalies are of lower amplitude than in the latter two regions, which suggests that the absence of ferrobasalts may be a general feature of the ocean crust generated at the Costa Rica Rift. The presence of two distinct magma types, one strongly depleted and the other moderately enriched in incompatible elements, suggests that magma chambers at the spreading center are discontinuous rather than continuous and that there is some chemical heterogeneity in the underlying mantle source. Observed variations in incompatible element ratios of basalts from the more depleted group could, however, reflect mixing between these two magma types. In general it would appear that the mantle feeding the Costa Rica Rift is significantly more depleted in incompatible trace elements than that feeding the Mid-Atlantic Ridge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalts from the base of a small seamount on ~1.5-m.y.-old crust west of the East Pacific Rise (EPR) at 9°N are intermediate in chemical and isotopic composition between light-rare-earth-element-depleted tholeiite (normal midocean ridge basalt (MORB)) and alkali basalt. Like oceanic alkali basalt, these rocks contain significantly more Ba, K, P, Sr, Ti, U, and Zr than normal MORB. Since the absolute abundances of these elements are still well below alkali basalt levels, the label transitional is adopted for these basalts. A series of fractionated MORB also occurs in this area, northwest of the Siqueiros Fracture Zone - Transform Fault. The normal tholeiites are either olivine-plagioclase or plagioclase-clinopyroxene phyric, while the transitional basalts are spinel-olivine phyric. Fractional crystallization quantitatively accounts for the chemical variability of the tholeiitic series but not for the transitional basalts. The tholeiitic series probably evolved in a crustal magma chamber ~4 km below the crest of the East Pacific Rise. 143Nd/144Nd and other chemical data suggest that the large-ion-lithophile-enriched transitional basalts may represent a hybrid of normal MORB and Siqueiros area alkali basalt. Incompatible element plots of K, P, and U indicate possible derivation of the transitional basalts by magma mixing. Magma mixing of unfractionated normal MORB and Siqueiros alkali basalt has been quantified. Derivation of the transitional basalts from a 1:1 mixture is supported by all available chemical data, including Cr, Cu, Nd, Ni, Sm, Sr, U, and V. This magma mixing apparently occurred at ?<~30 km depth within a few tens of kilometers from the EPR axis. These Siqueiros area EPR transitional basalts are compared with Mid-Atlantic Ridge (MAR) transitional basalts from the Iceland and Azores areas. The Siqueiros area basalts reflect a profound chemical and isotopic heterogeneity in the upper mantle, similar to that found along the MAR. Unlike the MAR, the EPR shows no evidence of plumelike bulges and associated large-scale outpourings of nonnormal MORB resulting from these mantle heterogeneities. Siqueiros alkali basalt and MORB, as well as transitional basalt and MORB, were recovered from single dredge hauls. Such close spatial and temporal proximity of the inferred mantle sources places severe constraints on geometric and physicochemical upper mantle models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A series of mesoporous Al2O3 samples with different porous structures and phases were prepared and used as supports for Cu/Al2O3 catalysts. These catalysts were characterized by N-2 adsorption, NMR, TGA, XRD, and UV - vis spectroscopic techniques and tested for the catalytic reaction of N2O decomposition. The activity increased with the increasing calcination temperatures of supports from 450 to 900 degreesC; however, a further increase in calcination temperature up to 1200 degreesC resulted in a significant reduction in activity. Characterization revealed that the calcination temperatures of supports influenced the porous structures and phases of the supports, which in turn affected the dispersions, phases, and activities of the impregnated copper catalyst. The different roles of surface spinel, bulk CuAl2O4, and bulk CuO is clarified for N2O catalytic decomposition. Two mechanism schemes were thus proposed to account for the varying activities of different catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental laboratory methods have been developed that enable phase-equilibria studies to be carried out on slags in the system Ca-Cu-Fe-O in equilibrium with metallic copper. These techniques involve equilibration at temperature, rapid quenching, and chemical analysis of the phases using electron-probe X-ray microanalysis (EPNIA). Equilibration experiments have been carried out in the temperature range of 1150 degreesC to 1250 degreesC (1423 to 1523 K) and in the composition range of 4 to 80 wt pct "Cu2O," 0 to 25 wt pct CaO, and 20 to 75 wt pct "Fe2O3" in equilibrium with metallic copper. Liquidus and solidus data are reported for the primary-phase fields of spinel (magnetite) and dicalcium ferrite. The resulting data have been used to construct liquidus isotherms of the CaO-"Cu2O"-"Fe2O3" system at metallic copper saturation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The four-component Fe-Sn-Zn-O system was studied experimentally in the range of temperatures from 1100 to 1400 degrees C in air using high temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA). Phase equilibrium relations and the extent of solid solutions among the phases cassiterite (Sn,Zn)O-2, hematite (Fe,Sn,Zn)(2)O-3, spinel (Fe,Sn,Zn)(3)O-4 and zincite (Zn,Fe,Sn)O are reported. Phase equilibria in the pseudo-binary systems Fe2O3-SnO2 and SnO2-ZnO are reported in air in the temperature ranges from 1100 to 1400 degrees C and 1200 to 1400 degrees C, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase equilibria in the Al-Fe-Zn-O system in the range 1250 °C to 1695 °C in air have been experimentally studied using equilibration and quenching techniques followed by electron probe X-ray microanalysis. The phase diagram of the binary Al2O3-ZnO system and isothermal sections of the Al2O3-“Fe2O3”-ZnO system at 1250 °C, 1400 °C, and 1550 °C have been constructed and reported for the first time. The extents of solid solutions in the corundum (Al,Fe)2O3, hematite (Fe,Al)2O3, Al2O3*Fe2O3 phase (Al,Fe)2O3, spinel (Al,Fe,Zn)O4, and zincite (Al,Zn,Fe)O primary phase fields have been measured. Corundum, hematite, and Al2O3*Fe2O3 phases dissolve less than 1 mol pct zinc oxide. The limiting compositions of Al2O3*Fe2O3 phase measured in this study at 1400 °C are slightly nonstoichiometric, containing more Al2O3 then previously reported. Spinel forms an extensive solid solution in the Al2O3-“Fe2O3”-ZnO system in air with increasing temperature. Zincite was found to dissolve up to 7 mole pct of aluminum in the presence of iron at 1550 °C in air. A meta-stable Al2O3-rich phase of the approximate composition Al8FeZnO14+x was observed at all of the conditions investigated. Aluminum dissolved in the zincite in the presence of iron appears to suppress the transformation from a round to platelike morphology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase equilibria in the Fe-Mg-Zn-O system in the temperature range 1100-1550degreesC in air have been experimentally studied using equilibration and quenching followed by electron probe X-ray microanalysis. The compositions of condensed phases in equilibrium in the binary MgO-ZnO system and the ternary Fe-Mg-O system have been reported at sub-solidus in air. Pseudo-ternary sections of the quaternary Fe-Mg-Zn-O system at 1100, 1250 and 1400degreesC in air were constructed using the experimental data. The solid solution of iron oxide, MgO and ZnO in the periclase (Mg, Zn, Fe)O, spinel (Mg2+, Fe2+, Zn2+)(x)Fe(2+y)3+O4 and zincite (Zn, Mg, Fe)O phases were found to be extensive under the conditions investigated. A continuous spinel solid solution is formed between the magnesioferrite (Mg2+, Fe2+)(x)Fe(2+y)3+O4 and franklinite (Zn2+, Fe2+)(x)Fe(2+y)3+O4 end-members at 1100 and 1250degreesC, extending to magnetite (Fe2+)(x)Fe(2+y)3+O4 at 1400degreesC in air. The compositions along the spinel boundaries were found to be non-stoichiometric, the magnitude of the non-stoichiometry being a function of composition and temperature in air. It was found that hematite dissolves neither MgO nor ZnO in air.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phase equilibria in the FeO-Fe2O3-ZnO system have been experimentally investigated at oxygen partial pressures between metallic iron saturation and air using a specially developed quenching technique, followed by electron probe X-ray microanalysis (EPMA) and then wet chemistry for determination of ferrous and ferric iron concentrations. Gas mixtures of H-2, N-2, and CO2 or CO and CO2 controlled the atmosphere in the furnace. The determined metal cation ratios in phases at equilibrium were used for the construction of the 1200 degrees C isothermal section of the Fe-Zn-O system. The univariant equilibria between the gas phase, spinel, wustite, and zincite was found to be close to pO(2) = 1 center dot 10(-8) atm at 1200 degrees C. The ferric and ferrous iron concentrations in zincite and spinel at equilibrium were also determined at temperatures from 1200 degrees C to 1400 degrees C at pO(2) = 1 center dot 10(-6) atm and at 1200 degrees C at pO(2) values ranging from 1 center dot 10(-4) to 1 center dot 10(-8) atm. Implications of the phase equilibria in the Fe-Zn-O system for the formation of the platelike zincite, especially important for the Imperial Smelting Process (ISP), are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zincite and spinel phases are present in the complex slag systems encountered in zinc/lead sintering and zinc smelting processes. These phases form extensive solid solutions and are stable over a wide range of compositions, temperatures and oxygen partial pressures. Accurate information on the stability of these phases is required in order to develop thermodynamic models of these slag systems. Phase equilibria in the Fe–Zn–O system have been experimentally studied for a range of conditions, between 900°C and 1580°C and oxygen partial pressures (pO2) between air and metallic iron saturation, using equilibration and quenching techniques. The compositions of the phases were measured using Electron probe X-ray microanalysis (EPMA). The ferrous and ferric bulk iron concentrations were determined using a specially developed wet-chemical analysis procedure based on the use of ammonium metavanadate. XRD was used to confirm phase identification. A procedure was developed to overcome the problems associated with evaporation of zinc at low pO2 values and to ensure the achievement of equilibria. An isothermal section of the system FeO–Fe2O3–ZnO at high ZnO concentrations at 1200°C was constructed. The maximum solubilities of iron and zinc in zincite and spinel phases in equilibrium were determined at pO2 = 1 × 10-6 atm at 1200°C and 1300°C. The morphology of the zincite crystals sharply changes in air between 1200–1300°C from rounded to plate-like. This is shown to be associated with significant increase in total iron concentration, the additional iron being principally in the form of ferric iron. Calculations performed by FactSage with a thermodynamically optimised database have been compared with the experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstructures of industrial ISF and synthetic sinters were examined. The principle phases present were found to consist of zincite, spinel and glass. The morphologies of the zincite phase in these complex multiphase materials were shown to relate directly to the bulk chemical compositions and thermal histories of the sinters. The conditions favouring the formation of plate-like zincite, essential for the development of refractory networks in the ISF sinters, were identified. The proportion of framework zincite present in the sinters was found to increase with increasing peak bed temperature and an increasing CaO/SiO2 ratio. The aspect ratio of the zincite increases by increasing iron in the solid solution in zincite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this PhD study, the effects of the cation substitutions on the physical properties of pyroxenes have been discussed. The results of this work extend the knowledge on pyroxenes with different chemical compositions. These properties might be used in the development of ceramic pigments, advanced materials and for the mineralogical phase identification. First of all, the crystallographic differences between Ge and Si pyroxenes have been examined. The structure of C2/c Ca rich Ge clinopyroxenes is very close to the low pressure C2/c structural configuration found in Ca-rich Si-pyroxenes. The shear of the unit cell is very similar, and the difference between a Ge end member and the corresponding Si-rich one is less than 1°. Instead, a remarkable difference exists between Ca-poor Si and Ge clinopyroxenes. First, Ca-poor Ge pyroxenes do not display a P21/c symmetry, but retain the C2/c symmetry; second, the observed C2/c structure shows, at room pressure, the configuration with highly kinked tetrahedral chains characteristic of the high pressure C2/c symmetry of Si Ca-poor pyroxenes. In orthopyroxenes, with Pbca symmetry, Ge-pyroxenes have volume larger than Si-pyroxenes. Samples along the system CaCoGe2O6 - CoCoGe2O6 have been synthesized at three different temperatures: 1050 °C, 1200 °C and 1250 °C. The aim of these solid state syntheses was to obtain a solid solution at ambient pressure, since the analogues Si-system needs high pressure. Unfortunately, very limited solution occurs because the structure forms of the two end member (high temperature for CaCoGe2O6 and high pressure CoCoGe2O6) are incompatible. The phase diagram of this system has been sketched and compared to that of Si. The cobalt end member (CoCoGe2O6) is stable at ambient pressure in two symmetries: at 1050 °C C2/c and 1200 °C Pbca. The impurity phase formed during these experiments is cobalt spinel. Raman spectroscopy has been used to investigate the vibrational properties of Ca-pyroxenes CaCoGe2O6, CaMgGe2O6, CaMgSi2O6 and CaCoSi2O6. A comparison between silicate and germanate pyroxenes shows significant changes in peak positions of the corresponding modes caused mainly by the difference of the Ge-Si atomic weight along with the distortion and compression of the coordination polyhedra. Red shift in Raman spectra of germanates has been calculated by a rough scale factor calculated by a simple harmonic oscillator model, considering the different bond lengths for 4-coordinated Si ~ 1.60- 1.65 Å vs Ge–O distance ~1.70 - 1.80 Å. The Raman spectra of CaMgGe2O6 and CaCoGe2O6 have been classified, in analogy with silicate (Wang et al., 2001) counterparts, in different ranges: - R1 (880-640 cm-1): strong T-O stretching modes of Ge and non-bridging O1 and O2 atoms within the GeO4 tetrahedron; - R2 (640-480 cm-1): stretching/bending modes of Ge-Obr-Ge bonds (chain stretching and chain bending); - R4 (480-360 cm-1): O-Ge-O vibrations; - R3 (360-240 cm-1): motions of the cations in M2 and M1 sites correlated with tetrahedral chain motion and tilting tetrahedra; - R5 (below 240 cm-1): lattice modes. The largest shift with respect to CaMgSi2O6 - CaCoSi2O6 is shown by the T-O stretching and chain modes. High-pressure Raman spectroscopy (up to about 8 GPa) on the same samples of Ca-pyroxenes using an ETH-type diamond anvil cell shows no phase transition within the P-ranges investigated, as all the peak positions vary linearly as a function of pressure. Our data confirm previous experimental findings on Si-diopside (Chopelas and Serghiou, 2000). In the investigated samples, all the Raman peaks shift upon compression, but the major changes in wavenumber with pressure are attributed to the chain bending (Ge-Obr-Ge bonds) and tetrahedra stretching modes (Ge-Onbr). Upon compression, the kinking angle, the bond lengths and T-T distances between tetrahedra decrease and consequently the wavenumber of the bending chain mode and tetrahedra stretching mode increases. Ge-pyroxenes show the higher P-induced peak-position shifts, being more compressible than corresponding silicates. The vibrational properties of CaM2+Ge2O6 (M2+ =Mg, Mn, Fe, Co, Ni, Zn) are reported for the first time. The wavenumber of Ge-Obr-Ge bending modes decreases linearly with increasing ionic radius of the M1 cation. No simple correlation has been found with M1 atomic mass or size or crystallographic parameters for the peak at ~850 cm-1 and in the low wavenumber regions. The magnetic properties of the system CaCoSi2O6 - CoCoSi2O6 have been investigated by magnetometry. The join is always characterized by 1 a.p.f.u. of cobalt in M1 site and this causes a pure collinear antiferromagnetic behaviour of the intra-chain superexchange interaction involving Co ions detected in all the measurements, while the magnetic order developed by the cobalt ions in M2 site (intra-chain) is affected by weak ferromagnetism, due to the non-collinearity of their antiferromagnetic interaction. In magnetically ordered systems, this non-collinearity effect promotes a spin canting of anti-parallel aligned magnetic moments and thus is a source of weak ferromagnetic behaviour in an antiferromagnetic. The weak ferromagnetism can be observed only for the samples with Co content higher than 0.5 a.p.f.u. in M2, when the concentration is sufficiently high to create a long range order along the M2 chain which is magnetically independent of M1 chain. The ferromagnetism was detected both in the M(T) at 10 Oe and M(H).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The New Caledonia ophiolite hosts one of the largest obducted mantle section in the world, hence providing a unique insight for the study of upper mantle processes. These mantle rocks belong to an “atypical” ophiolitic sequence, which is dominated by refractory harzburgites but it also includes minor spinel and plagioclase lherzolites. Upper crust is notably absent in the ophiolite, with the exception of some mafic-ultramafic cumulates cropping out in the southern part of the island. Although the New Caledonia ophiolite has been under investigation for decades, its ultra-depleted nature has made its characterization an analytical challenge, so that few trace element data are available, while isotopic data are completely missing. In this thesis a comprehensive geochemical study (major, trace element and Sr-Nd-Pb isotopes) of the peridotites and the associated intrusive mafic rocks from the New Caledonia ophiolite has been carried out. The peridotites are low-strain tectonites showing porphyroclastic textures. Spinel lherzolites are undepleted lithotypes, as attested by the presence of 7-8 vol% of Na2O and Al2O3-rich clinopyroxene (up to 0.5 wt% Na2O; 6.5 wt% Al2O3), Fo content of olivine (88.5-90.0 mol%) and low Cr# of spinel (13-17). Conversely, harzburgites display a refractory nature, proven by the remarkable absence of primary clinopyroxene, very high Fo content in olivine (90.9-92.9 mol%), high Mg# in orthopyroxene (89.8-94.2) and Cr# in spinel (39-71). REE contents show abyssal-type patterns for spinel lherzolites, while harzburgites display U-shaped patterns, typical of fore-arc settings. Spinel lherzolites REE compositions are consistent with relatively low degree (8-9%) of fractional melting of a DMM source, starting in the garnet stability field. Conversely, REE models for harzburgites indicate high melting degrees (20-25%) of a DMM mantle source under spinel faies conditions, consistent with hydrous melting in forearc setting. Plagioclase lherzolites exhibit melt impregnation microtextures, Cr- and TiO2-enriched spinels and REE, Ti, Y, Zr progressive increase with respect to spinel lherzolites. Impregnation models indicate that plagioclase lherzolites may derive from spinel lherzolites by entrapment of highly depleted MORB melts in the shallow oceanic lithosphere. Mafic intrusives are olivine gabbronorites with a very refractory composition, as attested by high Fo content of olivine (87.3-88.9 mol.%), very high Mg# of clinopyroxene (87.7-92.2) and extreme anorthitic content of plagioclase (An = 90-96 mol%). The high Mg#, low TiO2 concentrations in pyroxenes and the anorthitic composition of plagioclase point out an origin from ultra-depleted primitive magmas in a convergent setting. Geochemical trace element models show that the parental melts of gabbronorites are primitive magmas with striking depleted compositions, bearing only in part similarities with the primitive boninitic melts of Bonin Islands. The first Sr, Nd and Pb isotope data obtained for the New Caledonia ophiolite highlight the presence of DM mantle source variably modified by different processes. Nd-Sr-Pb isotopic ratios for the lherzolites (+6.98≤epsilon Ndi≤+10.97) indicate a DM source that suffered low-temperature hydrothermal reactions. Harzburgites are characterized by a wide variation of Sr, Nd and Pb isotopic values, extending from DM-type to EM2 compositions (-0.82≤ epsilon Ndi≤+17.55), suggesting that harzburgite source was strongly affected by subduction-related processes. Conversely, combined trace element and Sr-Nd-Pb isotopic data for gabbronorites indicate a derivation from a source with composition similar to Indian-type mantle, but affected by fluid input in subduction environment. These geochemical features point out an evolution in a pre-Eocenic marginal basin setting, possibly in the proximity of a transform fault, for the lherzolites. Conversely, the harzburgites acquired their main geochemical and isotopic fingerprint in subduction zone setting.