929 resultados para specific states of schizophrenia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Symbiosis between Rhizobium and its leguminous host requires elaborate communication between the partners throughout the interaction process. A calmodulin-like protein, termed calsymin, was identified in Rhizobium etli; a calmodulin-related protein in a Gram-negative bacterium had not been described previously. Calsymin possesses three repeated homologous domains. Each domain contains two predicted EF-hand Ca2+-binding motifs. Ca2+-binding activity of calsymin was demonstrated on purified protein. R. etli efficiently secretes calsymin without N-terminal cleavage of the protein. The gene encoding calsymin, casA, is exclusively expressed during colonization and infection of R. etli with the host. Expression of casA is controlled by a repressor protein, termed CasR, belonging to the TetR family of regulatory proteins. Mutation of the casA gene affects the development of bacteroids during symbiosis and symbiotic nitrogen fixation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spinal cord neuronal restricted progenitor (NRP) cells, when transplanted into the neonatal anterior forebrain subventricular zone, migrate to distinct regions throughout the forebrain including the olfactory bulb, frontal cortex, and occipital cortex but not to the hippocampus. Their migration pattern and differentiation potential is distinct from anterior forebrain subventricular zone NRPs. Irrespective of their final destination, NRP cells do not differentiate into glia. Rather they synthesize neurotransmitters, acquire region-specific phenotypes, and receive synapses from host neurons after transplantation. Spinal cord NRPs express choline acetyl transferase even in regions where host neurons do not express this marker. The restricted distribution of transplanted spinal cord NRP cells and their acquisition of varied region-specific phenotypes suggest that their ultimate fate and phenotype is dictated by a combination of intrinsic properties and extrinsic cues from the host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Site-specific photocleavage of hen egg lysozyme and bovine serum albumin (BSA) by N-(l-phenylalanine)-4-(1-pyrene)butyramide (Py-Phe) is reported. Py-Phe binds to lysozyme and BSA with binding constants 2.2 ± 0.3 × 105 M−1 and 6.5 ± 0.4 × 107 M−1, respectively. Photocleavage of lysozyme and BSA was achieved with high specificity when a mixture of protein, Py-Phe, and an electron acceptor, cobalt(III) hexammine (CoHA), was irradiated at 344 nm. Quantum yields of photocleavage of lysozyme and BSA were 0.26 and 0.0021, respectively. No protein cleavage was observed in the absence of Py-Phe, CoHA, or light. N-terminal sequencing of the protein fragments indicated a single cleavage site of lysozyme between Trp-108 and Val-109, whereas the cleavage of BSA was found to be between Leu-346 and Arg-347. Laser flash photolysis studies of a mixture of protein, Py-Phe, and CoHA showed a strong transient with absorption centered at ≈460 nm, corresponding to pyrene cation radical. Quenching of the singlet excited state of Py-Phe by CoHA followed by the reaction of the resulting pyrenyl cation radical with the protein backbone may be responsible for the protein cleavage. The high specificity of photocleavage may be valuable in targeting specific sites of proteins with small molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many bacterial plasmids replicate by a rolling-circle mechanism that involves the generation of single-stranded DNA (ssDNA) intermediates. Replication of the lagging strand of such plasmids initiates from their single strand origin (sso). Many different types of ssos have been identified. One group of ssos, termed ssoA, which have conserved sequence and structural features, function efficiently only in their natural hosts in vivo. To study the host specificity of sso sequences, we have analyzed the functions of two closely related ssoAs belonging to the staphylococcal plasmid pE194 and the streptococcal plasmid pLS1 in Staphylococcus aureus. The pLS1 ssoA functioned poorly in vivo in S. aureus as evidenced by accumulation of high levels of ssDNA but supported efficient replication in vitro in staphylococcal extracts. These results suggest that one or more host factors that are present in sufficient quantities in S. aureus cell-free extracts may be limiting in vivo. Mapping of the initiation points of lagging strand synthesis in vivo and in vitro showed that DNA synthesis initiates from specific sites within the pLS1 ssoA. These results demonstrate that specific initiation of replication can occur from the pLS1 ssoA in S. aureus although it plays a minimal role in lagging strand synthesis in vivo. Therefore, the poor functionality of the pLS1 in vivo in a nonnative host is caused by the low efficiency rather than a lack of specificity of the initiation process. We also have identified ssDNA promoters and mapped the primer RNAs synthesized by the S. aureus and Bacillus subtilis RNA polymerases from the pE194 and pLS1 ssoAs. The S. aureus RNA polymerase bound more efficiently to the native pE194 ssoA as compared with the pLS1 ssoA, suggesting that the strength of RNA polymerase–ssoA interaction may play a major role in the functionality of the ssoA sequences in Gram-positive bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] are mediated by the vitamin D receptor (VDR), a member of the nuclear receptor superfamily of transcriptional regulators. We have identified upstream exons of the human (h) VDR gene that are incorporated into variant transcripts, two of which encode N-terminal variant receptor proteins. Expression of the hVDR gene, which spans more than 60 kb and consists of at least 14 exons, is directed by two distinct promoters. A tissue-specific distal promoter generates unique transcripts in tissues involved in calcium regulation by 1,25-(OH)2D3 and can direct the expression of a luciferase reporter gene in a cell line-specific manner. These major N-terminal differences in hVDR transcripts, potentially resulting in structural differences in the expressed receptor, may contribute to cellular responsiveness to 1,25-(OH)2D3 through tissue differences in the regulation of VDR expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sympathetic preganglionic neurons exhibit segment-specific projections. Preganglionic neurons located in rostral spinal segments project rostrally within the sympathetic chain, those located in caudal spinal segments project caudally, and those in midthoracic segments project either rostrally or caudally in segmentally graded proportions. Moreover, rostrally and caudally projecting preganglionic neurons are skewed toward the rostral and caudal regions, respectively, of each midthoracic segment. The mechanisms that establish these segment-specific projections are unknown. Here we show that experimental manipulation of retinoid signaling in the chicken embryo alters the segment-specific pattern of sympathetic preganglionic projections and that this effect is mediated by the somitic mesoderm. Application of exogenous retinoic acid to a single rostral thoracic somite decreases the number of rostrally projecting preganglionic neurons at that level. Conversely, disrupting endogenous synthesis of retinoic acid in a single caudal thoracic somite increases the number of rostrally projecting preganglionic neurons at that level. The number of caudally projecting neurons does not change in either case, indicating that the effect is specific for rostrally projecting preganglionic neurons. These results indicate that the sizes of the rostrally and caudally projecting populations may be independently regulated by different factors. Opposing gradients of such factors along the longitudinal axis of the thoracic region of the embryo could be sufficient, in combination, to determine the segment-specific identity of preganglionic projections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apolipoprotein E (apoE) mediates the redistribution of lipids among cells and is expressed at highest levels in brain and liver. Human apoE exists in three major isoforms encoded by distinct alleles (ɛ2, ɛ3, and ɛ4). Compared with APOE ɛ2 and ɛ3, APOE ɛ4 increases the risk of cognitive impairments, lowers the age of onset of Alzheimer’s disease (AD), and decreases the response to AD treatments. Besides age, inheritance of the APOE ɛ4 allele is the most important known risk factor for the development of sporadic AD, the most common form of this illness. Although numerous hypotheses have been advanced, it remains unclear how APOE ɛ4 might affect cognition and increase AD risk. To assess the effects of distinct human apoE isoforms on the brain, we have used the neuron-specific enolase (NSE) promoter to express human apoE3 or apoE4 at similar levels in neurons of transgenic mice lacking endogenous mouse apoE. Compared with NSE-apoE3 mice and wild-type controls, NSE-apoE4 mice showed impairments in learning a water maze task and in vertical exploratory behavior that increased with age and were seen primarily in females. These findings demonstrate that human apoE isoforms have differential effects on brain function in vivo and that the susceptibility to apoE4-induced deficits is critically influenced by age and gender. These results could be pertinent to cognitive impairments observed in human APOE ɛ4 carriers. NSE-apoE mice and similar models may facilitate the preclinical assessment of treatments for apoE-related cognitive deficits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Variations in regulatory regions of developmental control genes have been implicated in the divergence of axial morphologies. To find potentially significant changes in cis-regulatory regions, we compared nucleotide sequences and activities of mammalian Hoxc8 early enhancers. The nucleotide sequence of the early enhancer region is extremely conserved among mammalian clades, with five previously described cis-acting elements, A–E, being invariant. However, a 4-bp deletion within element C of the Hoxc8 early enhancer sequence is observed in baleen whales. When assayed in transgenic mouse embryos, a baleen whale enhancer (unlike other mammalian enhancers) directs expression of the reporter gene to more posterior regions of the neural tube but fails to direct expression to posterior mesoderm. We suggest that regulation of Hoxc8 in baleen whales differs from other mammalian species and may be associated with variation in axial morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial growth factor (VEGF) plays a key role in physiological blood vessel formation and pathological angiogenesis such as tumor growth and ischemic diseases. Hypoxia is a potent inducer of VEGF in vitro. Here we demonstrate that VEGF is induced in vivo by exposing mice to systemic hypoxia. VEGF induction was highest in brain, but also occurred in kidney, testis, lung, heart, and liver. In situ hybridization analysis revealed that a distinct subset of cells within a given organ, such as glial cells and neurons in brain, tubular cells in kidney, and Sertoli cells in testis, responded to the hypoxic stimulus with an increase in VEGF expression. Surprisingly, however, other cells at sites of constitutive VEGF expression in normal adult tissues, such as epithelial cells in the choroid plexus and kidney glomeruli, decreased VEGF expression in response to the hypoxic stimulus. Furthermore, in addition to VEGF itself, expression of VEGF receptor-1 (VEGFR-1), but not VEGFR-2, was induced by hypoxia in endothelial cells of lung, heart, brain, kidney, and liver. VEGF itself was never found to be up-regulated in endothelial cells under hypoxic conditions, consistent with its paracrine action during normoxia. Our results show that the response to hypoxia in vivo is differentially regulated at the level of specific cell types or layers in certain organs. In these tissues, up- or down-regulation of VEGF and VEGFR-1 during hypoxia may influence their oxygenation after angiogenesis or modulate vascular permeability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

About 70% of hepatocellular carcinomas are known to express α-fetoprotein, which is normally expressed in fetal but not in adult livers. To induce herpes simplex virus-thymidine kinase expression in these cancer cells, we constructed an adeno-associated viral vector containing the HSV-TK gene under the control of the α-fetoprotein enhancer and albumin promoter. We previously demonstrated in vitro that although this vector can transduce a variety of human cells, only transduced AFP and albumin-expressing hepatocellular carcinoma cell lines were sensitive to killing by ganciclovir (GCV). In the present study, we explored the effect of this vector on hepatocellular carcinoma cells in vivo. Subcutaneous tumors generated in nude mice by implanting hepatocellular carcinoma cells previously transduced with this vector shrank dramatically after treatment with GCV. Bystander effect was also observed on the tumors generated by mixing transduced and untransduced cells. To test whether the tumor cells can be transduced by the virus in vivo, we injected the recombinant adeno-associated virus into tumors generated by untransduced hepatocarcinoma cell line. Tumor growth were retarded after treatment with GCV. These experiments demonstrate the feasibility of in vivo transduction of tumor cell with rAAV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two critical requirements for developing methods for the site-specific incorporation of amino acid analogues into proteins in vivo are (i) a suppressor tRNA that is not aminoacylated by any of the endogenous aminoacyl-tRNA synthetases (aaRSs) and (ii) an aminoacyl-tRNA synthetase that aminoacylates the suppressor tRNA but no other tRNA in the cell. Here we describe two such aaRS–suppressor tRNA pairs, one for use in the yeast Saccharomyces cerevisiae and another for use in Escherichia coli. The “21st synthetase–tRNA pairs” include E. coli glutaminyl-tRNA synthetase (GlnRS) along with an amber suppressor derived from human initiator tRNA, for use in yeast, and mutants of the yeast tyrosyl-tRNA synthetase (TyrRS) along with an amber suppressor derived from E. coli initiator tRNA, for use in E. coli. The suppressor tRNAs are aminoacylated in vivo only in the presence of the heterologous aaRSs, and the aminoacylated tRNAs function efficiently in suppression of amber codons. Plasmids carrying the E. coli GlnRS gene can be stably maintained in yeast. However, plasmids carrying the yeast TyrRS gene could not be stably maintained in E. coli. This lack of stability is most likely due to the fact that the wild-type yeast TyrRS misaminoacylates the E. coli proline tRNA. By using error-prone PCR, we have isolated and characterized three mutants of yeast TyrRS, which can be stably expressed in E. coli. These mutants still aminoacylate the suppressor tRNA essentially quantitatively in vivo but show increased discrimination in vitro for the suppressor tRNA over the E. coli proline tRNA by factors of 2.2- to 6.8-fold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The RecQ helicases constitute a small but highly conserved helicase family. Proteins in this family are of particular interest because they are critical to maintenance of genomic stability in prokaryotes and eukaryotes. Eukaryotic RecQ helicase family members have been shown to unwind not only DNA duplexes but also DNAs with alternative structures, including structures stabilized by G quartets (G4 DNAs). We report that Escherichia coli RecQ can also unwind G4 DNAs, and that unwinding requires ATP and divalent cation. RecQ helicase is comparably active on duplex and G4 DNA substrates, as measured by direct comparison of protein activity and by competition assays. The porphyrin derivative, N-methyl mesoporphyrin IX (NMM), is a highly specific inhibitor of RecQ unwinding activity on G4 DNA but not duplex DNA: the inhibition constant (Ki) for NMM inhibition of G4 DNA unwinding is 1.7 µM, approximately two orders of magnitude below the Ki for inhibition of duplex DNA unwinding (>100 µM). NMM may therefore prove to be a valuable compound for substrate-specific inhibition of other RecQ family helicases in vitro and in vivo.