945 resultados para specific root length
Resumo:
Introduction The clinically known importance of patient sex as a major risk factor for compromised bone healing is poorly reflected in animal models. Consequently, the underlying cellular mechanisms remain elusive. Because mesenchymal stem cells (MSCs) are postulated to regulate tissue regeneration and give rise to essential differentiated cell types, they may contribute to sex-specific differences in bone healing outcomes. Methods We investigated sex-specific variations in bone healing and associated differences in MSC populations. A 1.5 mm osteotomy gap in the femora of 8 male and 8 female 12-month-old Sprague-Dawley rats was stabilized by an external fixator. Healing was analyzed in terms of biomechanical testing, bridging and callus size over time (radiography at 2, 4, and 6 weeks after surgery), and callus volume and geometry by μCT at final follow-up. MSCs were obtained from bone marrow samples of an age-matched group of 12 animals (6 per gender) and analyzed for numbers of colony-forming units (CFUs) and their capacity to differentiate and proliferate. The proportion of senescent cells was determined by β-galactosidase staining. Results Sex-specific differences were indicated by a compromised mechanical competence of the callus in females compared with males (maximum torque at failure, p = 0.028). Throughout the follow-up, the cross-sectional area of callus relative to bone was reduced in females (p ≤ 0.01), and the bridging of callus was delayed (p 2weeks = 0.041). μCT revealed a reduced callus size (p = 0.003), mineralization (p = 0.003) and polar moment of inertia (p = 0.003) in female animals. The female bone marrow contained significantly fewer MSCs, represented by low CFU numbers in both femora and tibiae (p femur = 0.017, p tibia = 0.010). Functional characteristics of male and female MSCs were similar. Conclusion Biomechanically compromised and radiographically delayed bone formation were distinctive in female rats. These differences were concomitant with a reduced number of MSCs, which may be causative for the suboptimal bone healing.
Resumo:
High-resolution, high-contrast, three-dimensional images of live cell and tissue architecture can be obtained using second harmonic generation (SHG), which comprises non-absorptive frequency changes in an excitation laser line. SHG does not require any exogenous antibody or fluorophore labeling, and can generate images from unstained sections of several key endogenous biomolecules, in a wide variety of species and from different types of processed tissue. Here, we examined normal control human skin sections and human burn scar tissues using SHG on a multi-photon microscope (MPM). Examination and comparison of normal human skin and burn scar tissue demonstrated a clear arrangement of fibers in the dermis, similar to dermal collagen fiber signals. Fluorescence-staining confirmed the MPM-SHG collagen colocalization with antibody staining for dermal collagen type-I but not fibronectin or elastin. Furthermore, we were able to detect collagen MPM-SHG signal in human frozen sections as well as in unstained paraffin embedded tissue sections that were then compared with hematoxylin and eosin staining in the identical sections. This same approach was also successful in localizing collagen in porcine and ovine skin samples, and may be particularly important when species-specific antibodies may not be available. Collectively, our results demonstrate that MPM SHG-detection is a useful tool for high resolution examination of collagen architecture in both normal and wounded human, porcine and ovine dermal tissue.
Resumo:
AIMS: Recent studies on corneal markers have advocated corneal nerve fibre length as the most important measure of diabetic peripheral neuropathy. The aim of this study was to determine if standardizing corneal nerve fibre length for tortuosity increases its association with other measures of diabetic peripheral neuropathy. METHODS: Two hundred and thirty-one individuals with diabetes with either predominantly mild or absent neuropathic changes and 61 control subjects underwent evaluation of diabetic neuropathy symptom score, neuropathy disability score, testing with 10-g monofilament, quantitative sensory testing (warm, cold, vibration detection) and nerve conduction studies. Corneal nerve fibre length and corneal nerve fibre tortuosity were measured using corneal confocal microscopy. A tortuosity-standardised corneal nerve fibre length variable was generated by dividing corneal nerve fibre length by corneal nerve fibre tortuosity. Differences in corneal nerve morphology between individuals with and without diabetic peripheral neuropathy and control subjects were determined and associations were estimated between corneal morphology and established tests of, and risk factors for, diabetic peripheral neuropathy. RESULTS: The tortuosity-standardised corneal nerve fibre length variable was better than corneal nerve fibre length in demonstrating differences between individuals with diabetes, with and without neuropathy (tortuosity-standardised corneal nerve fibre length variable: 70.5 ± 27.3 vs. 84.9 ± 28.7, P < 0.001, receiver operating characteristic area under the curve = 0.67; corneal nerve fibre length: 15.9 ± 6.9 vs. 18.4 ± 6.2 mm/mm(2) , P = 0.004, receiver operating characteristic area under the curve = 0.64). Furthermore, the tortuosity-standardised corneal nerve fibre length variable demonstrated a significant difference between the control subjects and individuals with diabetes, without neuropathy, while corneal nerve fibre length did not (tortuosity-standardised corneal nerve fibre length variable: 94.3 ± 27.1 vs. 84.9 ± 28.7, P = 0.028; corneal nerve fibre length: 20.1 ± 6.3 vs. 18.4 ± 6.2 mm/mm(2) , P = 0.084). Correlations between corneal nerve fibre length and established measures of neuropathy and risk factors for neuropathy were higher when a correction was made for the nerve tortuosity. CONCLUSIONS: Standardizing corneal nerve fibre length for tortuosity enhances the ability to differentiate individuals with diabetes, with and without neuropathy.
Context-specific stressors, work-related social support and work-family conflict : a mediation study
Resumo:
Understanding the antecedents of work-family conflict is important as it allows organisations to effectively engage in work design for professional employees. This study examines the impact of sources of social support as antecedents of work-family conflict. The hypotheses were tests using Partial Least Squares modelling on a sample of 366 professional employees. The path model showed that context-specific stressors impacted positively on job demand, which led to higher levels of work-family conflict. Contrary to our expectation, non-work related social support did not have any statistical relationship with job demand and work-family conflict. In addition, individuals experiencing high job demands were found to obtain more social support from both work and non-work-related sources. Individuals with more work-related social support were less likely to have less work-family conflict. Surprisingly, non-work social support sources had no statistically significant relationship with work-family conflict.
Resumo:
The bed nucleus of the stria terminalis (BNST) is believed to be a critical relay between the central nucleus of the amygdala (CE) and the paraventricular nucleus of the hypothalamus in the control of hypothalamic–pituitary– adrenal (HPA) responses elicited by conditioned fear stimuli. If correct, lesions of CE or BNST should block expression of HPA responses elicited by either a specific conditioned fear cue or a conditioned context. To test this, rats were subjected to cued (tone) or contextual classical fear conditioning. Two days later, electrolytic or sham lesions were placed in CE or BNST. After 5 days, the rats were tested for both behavioral (freezing) and neuroendocrine (corticosterone) responses to tone or contextual cues. CE lesions attenuated conditioned freezing and corticosterone responses to both tone and con- text. In contrast, BNST lesions attenuated these responses to contextual but not tone stimuli. These results suggest CE is indeed an essential output of the amygdala for the expres- sion of conditioned fear responses, including HPA re- sponses, regardless of the nature of the conditioned stimu- lus. However, because lesions of BNST only affected behav- ioral and endocrine responses to contextual stimuli, the results do not support the notion that BNST is critical for HPA responses elicited by conditioned fear stimuli in general. Instead, the BNST may be essential specifically for contex- tual conditioned fear responses, including both behavioral and HPA responses, by virtue of its connections with the hippocampus, a structure essential to contextual condition- ing. The results are also not consistent with the hypothesis that BNST is only involved in unconditioned aspects of fear and anxiety.
Resumo:
The development of effective therapeutic strategies against prostate cancer bone metastases has been impeded by the lack of adequate animal models that are able to recapitulate the biology of the disease in humans. Bioengineered approaches allow researchers to create sophisticated experimentally and physiologically relevant in vivo models to study interactions between cancer cells and their microenvironment under reproducible conditions. The aim of this study was to engineer a morphologically and functionally intact humanized organ bone which can serve as a homing site for human prostate cancer cells. Transplantation of biodegradable tubular composite scaffolds seeded with human mesenchymal progenitor cells and loaded with rhBMP-7 resulted in the development of a chimeric bone construct including a large number of human mesenchymal cells which were shown to be metabolically active and capable of producing extracellular matrix components. Micro-CT analysis demonstrated that the newly formed ossicle recapitulated the morphological features of a physiological organ bone with a trabecular network surrounded by a cortex-like outer structure. This microenvironment was supportive of the lodgement and maintenance of murine haematopoietic cell clusters, thus mimicking a functional organ bone. Bioluminescence imaging demonstrated that luciferase-transduced human PC3 cells reproducibly homed to the humanized tissue engineered bone constructs, proliferated, and developed macro-metastases. This model allows the analysis of interactions between human prostate cancer cells and a functional humanized bone organ within an immuno-incompetent murine host. The system can serve as a reproducible platform to study effects of therapeutics against prostate cancer bone metastases within a humanized microenvironment.
Resumo:
In “Arm’s Length Pricing and Multinational Banks: An Old Fashioned Approach in a Modern World”, Kerrie Sadiq, describes the high level of integration of multinational financial institutions and argues that treating each element within a given operation as a separate entity for transfer pricing purposes is not economically or legally realistic. She proposes instead formulary apportionment as a device for managing this complexity.
Resumo:
Biodiesel, produced from renewable feedstock represents a more sustainable source of energy and will therefore play a significant role in providing the energy requirements for transportation in the near future. Chemically, all biodiesels are fatty acid methyl esters (FAME), produced from raw vegetable oil and animal fat. However, clear differences in chemical structure are apparent from one feedstock to the next in terms of chain length, degree of unsaturation, number of double bonds and double bond configuration-which all determine the fuel properties of biodiesel. In this study, prediction models were developed to estimate kinematic viscosity of biodiesel using an Artificial Neural Network (ANN) modelling technique. While developing the model, 27 parameters based on chemical composition commonly found in biodiesel were used as the input variables and kinematic viscosity of biodiesel was used as output variable. Necessary data to develop and simulate the network were collected from more than 120 published peer reviewed papers. The Neural Networks Toolbox of MatLab R2012a software was used to train, validate and simulate the ANN model on a personal computer. The network architecture and learning algorithm were optimised following a trial and error method to obtain the best prediction of the kinematic viscosity. The predictive performance of the model was determined by calculating the coefficient of determination (R2), root mean squared (RMS) and maximum average error percentage (MAEP) between predicted and experimental results. This study found high predictive accuracy of the ANN in predicting fuel properties of biodiesel and has demonstrated the ability of the ANN model to find a meaningful relationship between biodiesel chemical composition and fuel properties. Therefore the model developed in this study can be a useful tool to accurately predict biodiesel fuel properties instead of undertaking costly and time consuming experimental tests.
Resumo:
Purpose This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs, and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 mm to 100 mm, using a nominal photon energy of 6 MV. Results According to the practical definition established in this project, field sizes < 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0 % to 2.0 %, or field size uncertainties are 0.5 mm, field sizes < 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes < 12 mm. Source occlusion also caused a large change in OPF for field sizes < 8 mm. Based on the results of this study, field sizes < 12 mm were considered to be theoretically very small for 6 MV beams. Conclusions Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least < 12 mm and more conservatively < 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.
Resumo:
The international tax system, designed a century ago, has not kept pace with the modern multinational entity rendering it ineffective in taxing many modern businesses according to economic activity. One of those modern multinational entities is the multinational financial institution (MNFI). The recent global financial crisis provides a particularly relevant and significant example of the failure of the current system on a global scale. The modern MNFI is increasingly undertaking more globalised and complex trading operations. A primary reason for the globalisation of financial institutions is that they typically ‘follow-the-customer’ into jurisdictions where international capital and international investors are required. The International Monetary Fund (IMF) recently reported that from 1995-2009, foreign bank presence in developing countries grew by 122 per cent. The same study indicates that foreign banks have a 20 per cent market share in OECD countries and 50 per cent in emerging markets and developing countries. Hence, most significant is that fact that MNFIs are increasingly undertaking an intermediary role in developing economies where they are financing core business activities such as mining and tourism. IMF analysis also suggests that in the future, foreign bank expansion will be greatest in emerging economies. The difficulties for developing countries in applying current international tax rules, especially the current traditional transfer pricing regime, are particularly acute in relation to MNFIs, which are the biggest users of tax havens and offshore finance. This paper investigates whether a unitary taxation approach which reflects economic reality would more easily and effectively ensure that the profits of MNFIs are taxed in the jurisdictions which give rise to those profits. It has previously been argued that the uniqueness of MNFIs results in a failure of the current system to accurately allocate profits and that unitary tax as an alternative could provide a sounder allocation model for international tax purposes. This paper goes a step further, and examines the practicalities of the implementation of unitary taxation for MNFIs in terms of the key components of such a regime, along with their their implications. This paper adopts a two-step approach in considering the implications of unitary taxation as a means of improved corporate tax coordination which requires international acceptance and agreement. First, the definitional issues of the unitary MNFI are examined and second, an appropriate allocation formula for this sector is investigated. To achieve this, the paper asks first, how the financial sector should be defined for the purposes of unitary taxation and what should constitute a unitary business for that sector and second, what is the ‘best practice’ model of an allocation formula for the purposes of the apportionment of the profits of the unitary business of a financial institution.
Resumo:
Executive Summary Emergency Departments (EDs) locally, nationally and internationally are becoming increasingly busy. Within this context, it can be challenging to deliver a health service that is safe, of high quality and cost-effective. Whilst various models are described within the literature that aim to measure ED ‘work’ or ‘activity’, they are often not linked to a measure of costs to provide such activity. It is important for hospital and ED managers to understand and apply this link so that optimal staffing and financial resourcing can be justifiably sought. This research is timely given that Australia has moved towards a national Activity Based Funding (ABF) model for ED activity. ABF is believed to increase transparency of care and fairness (i.e. equal work receives equal pay). ABF involves a person-, performance- or activity-based payment system, and thus a move away from historical “block payment” models that do not incentivise efficiency and quality. The aim of the Statewide Workforce and Activity-Based Funding Modelling Project in Queensland Emergency Departments (SWAMPED) is to identify and describe best practice Emergency Department (ED) workforce models within the current context of ED funding that operates under an ABF model. The study is comprised of five distinct phases. This monograph (Phase 1) comprises a systematic review of the literature that was completed in June 2013. The remaining phases include a detailed survey of Queensland hospital EDs’ resource levels, activity and operational models of care, development of new resource models, development of a user-friendly modelling interface for ED mangers, and production of a final report that identifies policy implications. The anticipated deliverable outcome of this research is the development of an ABF based Emergency Workforce Modelling Tool that will enable ED managers to profile both their workforce and operational models of care. Additionally, the tool will assist with the ability to more accurately inform adequate staffing numbers required in the future, inform planning of expected expenditures and be used for standardisation and benchmarking across similar EDs. Summary of the Findings Within the remit of this review of the literature, the main findings include: 1. EDs are becoming busier and more congested Rising demand, barriers to ED throughput and transitions of care all contribute to ED congestion. In addition requests by organisational managers and the community require continued broadening of the scope of services required of the ED and further increases in demand. As the population live longer with more lifestyle diseases their propensity to require ED care continues to grow. 2. Various models of care within EDs exist Models often vary to account for site specific characteritics to suit staffing profile, ED geographical location (e.g. metropolitan or rural site), and patient demographic profile (e.g. paediatrics, older persons, ethnicity). Existing and new models implemented within EDs often depend on the target outcome requiring change. Generally this is focussed on addressing issues at the input, throughput or output areas of the ED. Even with models targeting similar demographic or illness, the structure and process elements underpinning the model can vary, which can impact on outcomes and variance to the patient and carer experience between and within EDs. Major models of care to manage throughput inefficiencies include: A. Workforce Models of Care focus on the appropriate level of staffing for a given workload to provide prompt, timely and clinically effective patient care within an emergency care setting. The studies reviewed suggest that the early involvement of senior medical decision maker and/or specialised nursing roles such as Emergency Nurse Practitioners and Clinical Initiatives Nurse, primary contact or extended scope Allied Health Practitioners can facilitate patient flow and improve key indicators such as length of stay and reducing the number of those who did not wait to be seen amongst others. B. Operational Models of Care within EDs focus on mechanisms for streaming (e.g. fast-tracking) or otherwise grouping patient care based on acuity and complexity to assist with minimising any throughput inefficiencies. While studies support the positive impact of these models in general, it appears that they are most effective when they are adequately resourced. 3. Various methods of measuring ED activity exist Measuring ED activity requires careful consideration of models of care and staffing profile. Measuring activity requires the ability to account for factors including: patient census, acuity, LOS, intensity of intervention, department skill-mix plus an adjustment for non-patient care time. 4. Gaps in the literature Continued ED growth calls for new and innovative care delivery models that are safe, clinically effective and cost effective. New roles and stand-alone service delivery models are often evaluated in isolation without considering the global and economic impact on staffing profiles. Whilst various models of accounting for and measuring health care activity exist, costing studies and cost effectiveness studies are lacking for EDs making accurate and reliable assessments of care models difficult. There is a necessity to further understand, refine and account for measures of ED complexity that define a workload upon which resources and appropriate staffing determinations can be made into the future. There is also a need for continued monitoring and comprehensive evaluation of newly implemented workforce modelling tools. This research acknowledges those gaps and aims to: • Undertake a comprehensive and integrated whole of department workforce profiling exercise relative to resources in the context of ABF. • Inform workforce requirements based on traditional quantitative markers (e.g. volume and acuity) combined with qualitative elements of ED models of care; • Develop a comprehensive and validated workforce calculation tool that can be used to better inform or at least guide workforce requirements in a more transparent manner.
Resumo:
Term-based approaches can extract many features in text documents, but most include noise. Many popular text-mining strategies have been adapted to reduce noisy information from extracted features; however, text-mining techniques suffer from low frequency. The key issue is how to discover relevance features in text documents to fulfil user information needs. To address this issue, we propose a new method to extract specific features from user relevance feedback. The proposed approach includes two stages. The first stage extracts topics (or patterns) from text documents to focus on interesting topics. In the second stage, topics are deployed to lower level terms to address the low-frequency problem and find specific terms. The specific terms are determined based on their appearances in relevance feedback and their distribution in topics or high-level patterns. We test our proposed method with extensive experiments in the Reuters Corpus Volume 1 dataset and TREC topics. Results show that our proposed approach significantly outperforms the state-of-the-art models.
Resumo:
Research suggests that the length and quality of police-citizen encounters affect policing outcomes. The Koper Curve, for example, shows that the optimal length for police presence in hot spots is between 14 and 15 minutes, with diminishing returns observed thereafter. Our study, using data from the Queensland Community Engagement Trial (QCET), examines the impact of encounter length on citizen perceptions of police performance. QCET involved a randomised field trial, where 60 random breath test (RBT) traffic stop operations were randomly allocated to an experimental condition involving a procedurally just encounter or a business-as-usual control condition. Our results show that the optimal length of time for procedurally just encounters during RBT traffic stops is just less than 2 minutes. We show, therefore, that it is important to encourage and facilitate positive police–citizen encounters during RBTat traffic stops, while ensuring that the length of these interactions does not pass a point of diminishing returns.
Resumo:
In this paper, we propose a new steganalytic method to detect the message hidden in a black and white image using the steganographic technique developed by Liang, Wang and Zhang. Our detection method estimates the length of hidden message embedded in a binary image. Although the hidden message embedded is visually imperceptible, it changes some image statistic (such as inter-pixels correlation). Based on this observation, we first derive the 512 patterns histogram from the boundary pixels as the distinguishing statistic, then we compute the histogram difference to determine the changes of the 512 patterns histogram induced by the embedding operation. Finally we propose histogram quotient to estimate the length of the embedded message. Experimental results confirm that the proposed method can effectively and reliably detect the length of the embedded message.
Resumo:
Software to create individualised finite element (FE) models of the osseoligamentous spine using pre-operative computed tomography (CT) data-sets for spinal surgery patients has recently been developed. This study presents a geometric sensitivity analysis of this software to assess the effect of intra-observer variability in user-selected anatomical landmarks. User-selected landmarks on the osseous anatomy were defined from CT data-sets for three scoliosis patients and these landmarks were used to reconstruct patient-specific anatomy of the spine and ribcage using parametric descriptions. The intra-observer errors in landmark co-ordinates for these anatomical landmarks were calculated. FE models of the spine and ribcage were created using the reconstructed anatomy for each patient and these models were analysed for a loadcase simulating clinical flexibility assessment. The intra-observer error in the anatomical measurements was low in comparison to the initial dimensions, with the exception of the angular measurements for disc wedge and zygapophyseal joint (z-joint) orientation and disc height. This variability suggested that CT resolution may influence such angular measurements, particularly for small anatomical features, such as the z-joints, and may also affect disc height. The results of the FE analysis showed low variation in the model predictions for spinal curvature with the mean intra-observer variability substantially less than the accepted error in clinical measurement. These findings demonstrate that intra-observer variability in landmark point selection has minimal effect on the subsequent FE predictions for a clinical loadcase.