983 resultados para spatial distance
Resumo:
Finding an adequate paraphrase representation formalism is a challenging issue in Natural Language Processing. In this paper, we analyse the performance of Tree Edit Distance as a paraphrase representation baseline. Our experiments using Edit Distance Textual Entailment Suite show that, as Tree Edit Distance consists of a purely syntactic approach, paraphrase alternations not based on structural reorganizations do not find an adequate representation. They also show that there is much scope for better modelling of the way trees are aligned.
Resumo:
Community-level patterns of functional traits relate to community assembly and ecosystem functioning. By modelling the changes of different indices describing such patterns - trait means, extremes and diversity in communities - as a function of abiotic gradients, we could understand their drivers and build projections of the impact of global change on the functional components of biodiversity. We used five plant functional traits (vegetative height, specific leaf area, leaf dry matter content, leaf nitrogen content and seed mass) and non-woody vegetation plots to model several indices depicting community-level patterns of functional traits from a set of abiotic environmental variables (topographic, climatic and edaphic) over contrasting environmental conditions in a mountainous landscape. We performed a variation partitioning analysis to assess the relative importance of these variables for predicting patterns of functional traits in communities, and projected the best models under several climate change scenarios to examine future potential changes in vegetation functional properties. Not all indices of trait patterns within communities could be modelled with the same level of accuracy: the models for mean and extreme values of functional traits provided substantially better predictive accuracy than the models calibrated for diversity indices. Topographic and climatic factors were more important predictors of functional trait patterns within communities than edaphic predictors. Overall, model projections forecast an increase in mean vegetation height and in mean specific leaf area following climate warming. This trend was important at mid elevation particularly between 1000 and 2000 m asl. With this study we showed that topographic, climatic and edaphic variables can successfully model descriptors of community-level patterns of plant functional traits such as mean and extreme trait values. However, which factors determine the diversity of functional traits in plant communities remains unclear and requires more investigations.
Resumo:
Abstract
Resumo:
Etude des modèles de Whittle markoviens probabilisés Résumé Le modèle de Whittle markovien probabilisé est un modèle de champ spatial autorégressif simultané d'ordre 1 qui exprime simultanément chaque variable du champ comme une moyenne pondérée aléatoire des variables adjacentes du champ, amortie d'un coefficient multiplicatif ρ, et additionnée d'un terme d'erreur (qui est une variable gaussienne homoscédastique spatialement indépendante, non mesurable directement). Dans notre cas, la moyenne pondérée est une moyenne arithmétique qui est aléatoire du fait de deux conditions : (a) deux variables sont adjacentes (au sens d'un graphe) avec une probabilité 1 − p si la distance qui les sépare est inférieure à un certain seuil, (b) il n'y a pas d'adjacence pour des distances au-dessus de ce seuil. Ces conditions déterminent un modèle d'adjacence (ou modèle de connexité) du champ spatial. Un modèle de Whittle markovien probabilisé aux conditions où p = 0 donne un modèle de Whittle classique qui est plus familier en géographie, économétrie spatiale, écologie, sociologie, etc. et dont ρ est le coefficient d'autorégression. Notre modèle est donc une forme probabilisée au niveau de la connexité du champ de la forme des modèles de Whittle classiques, amenant une description innovante de l'autocorrélation spatiale. Nous commençons par décrire notre modèle spatial en montrant les effets de la complexité introduite par le modèle de connexité sur le pattern de variances et la corrélation spatiale du champ. Nous étudions ensuite la problématique de l'estimation du coefficent d'autorégression ρ pour lequel au préalable nous effectuons une analyse approfondie de son information au sens de Fisher et de Kullback-Leibler. Nous montrons qu'un estimateur non biaisé efficace de ρ possède une efficacité qui varie en fonction du paramètre p, généralement de manière non monotone, et de la structure du réseau d'adjacences. Dans le cas où la connexité du champ est non observée, nous montrons qu'une mauvaise spécification de l'estimateur de maximum de vraisemblance de ρ peut biaiser celui-ci en fonction de p. Nous proposons dans ce contexte d'autres voies pour estimer ρ. Pour finir, nous étudions la puissance des tests de significativité de ρ pour lesquels les statistiques de test sont des variantes classiques du I de Moran (test de Cliff-Ord) et du I de Moran maximal (en s'inspirant de la méthode de Kooijman). Nous observons la variation de puissance en fonction du paramètre p et du coefficient ρ, montrant par cette voie la dualité de l'autocorrélation spatiale entre intensité et connectivité dans le contexte des modèles autorégressifs
Resumo:
We describe the spatial distribution of tree height of Pinus uncinata at two undisturbed altitudinal treeline ecotones in the southern Pyrenees (Ordesa, O, and Tessó, T). At each site, a rectangular plot (30 x 140 m) was located with its longest side parallel to the slope and encompassing treeline and timberline. At site O, height increased abruptly going downslope with a high spatial autocorrelation at short distances. In contrast, the changes of tree height across the ecotone at site T were gradual, and tree height was less spatially autocorrelated. These results can be explained by the greater importance of wind and snow avalanches at sites O and T, respectively.
Resumo:
Matrix sublimation has demonstrated to be a powerful approach for high-resolution matrix-assisted laser desorption ionization (MALDI) imaging of lipids, providing very homogeneous solvent-free deposition. This work presents a comprehensive study aiming to evaluate current and novel matrix candidates for high spatial resolution MALDI imaging mass spectrometry of lipids from tissue section after deposition by sublimation. For this purpose, 12 matrices including 2,5-dihydroxybenzoic acid (DHB), sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid (CHCA), 2,6-dihydroxyacetphenone (DHA), 2',4',6'-trihydroxyacetophenone (THAP), 3-hydroxypicolinic acid (3-HPA), 1,8-bis(dimethylamino)naphthalene (DMAN), 1,8,9-anthracentriol (DIT), 1,5-diaminonapthalene (DAN), p-nitroaniline (NIT), 9-aminoacridine (9-AA), and 2-mercaptobenzothiazole (MBT) were investigated for lipid detection efficiency in both positive and negative ionization modes, matrix interferences, and stability under vacuum. For the most relevant matrices, ion maps of the different lipid species were obtained from tissue sections at high spatial resolution and the detected peaks were characterized by matrix-assisted laser desorption ionization time-of-flight/time-of-flight (MALDI-TOF/TOF) mass spectrometry. First proposed for imaging mass spectrometry (IMS) after sublimation, DAN has demonstrated to be of high efficiency providing rich lipid signatures in both positive and negative polarities with high vacuum stability and sub-20 μm resolution capacity. Ion images from adult mouse brain were generated with a 10 μm scanning resolution. Furthermore, ion images from adult mouse brain and whole-body fish tissue sections were also acquired in both polarity modes from the same tissue section at 100 μm spatial resolution. Sublimation of DAN represents an interesting approach to improve information with respect to currently employed matrices providing a deeper analysis of the lipidome by IMS.
Resumo:
[spa] Se presenta un nuevo modelo para la toma de decisiones basado en el uso de medidas de distancia y de operadores de agregación inducidos. Se introduce la distancia media ponderada ordenada inducida (IOWAD). Es un nuevo operador de agregación que extiende el operador OWA a través del uso de distancias y un proceso de reordenación de los argumentos basado en variables de ordenación inducidas. La principal ventaja el operador IOWAD es la posibilidad de utilizar una familia parametrizada de operadores de agregación entre la distancia individual máxima y la mínima. Se estudian algunas de sus principales propiedades y algunos casos particulares. Se desarrolla un ejemplo numérico en un problema de toma de decisiones sobre selección de inversiones. Se observa que la principal ventaja de este modelo en la toma de decisiones es la posibilidad de mostrar una visión más completa del proceso, de forma que el decisor está capacitado para seleccionar la alternativa que está más cerca de sus intereses.
Resumo:
[spa] Se presenta un nuevo modelo para la toma de decisiones basado en el uso de medidas de distancia y de operadores de agregación inducidos. Se introduce la distancia media ponderada ordenada inducida (IOWAD). Es un nuevo operador de agregación que extiende el operador OWA a través del uso de distancias y un proceso de reordenación de los argumentos basado en variables de ordenación inducidas. La principal ventaja el operador IOWAD es la posibilidad de utilizar una familia parametrizada de operadores de agregación entre la distancia individual máxima y la mínima. Se estudian algunas de sus principales propiedades y algunos casos particulares. Se desarrolla un ejemplo numérico en un problema de toma de decisiones sobre selección de inversiones. Se observa que la principal ventaja de este modelo en la toma de decisiones es la posibilidad de mostrar una visión más completa del proceso, de forma que el decisor está capacitado para seleccionar la alternativa que está más cerca de sus intereses.
Resumo:
In the early 1900s, the wolf (Canis lupus) was extirpated from France and Switzerland. There is growing evidence that the species is presently recolonizing these countries in the western Alps. By sequencing the mitochondrial DNA (mtDNA) control region of various samples mainly collected in the field (scats, hairs, regurgitates, blood or tissue; n = 292), we could (1) develop a non-invasive method enabling the unambiguous attribution of these samples to wolf, fox (Vulpes vulpes) or dog (Canis familiaris), among others; (2) demonstrate that Italian, French and Swiss wolves share the same mtDNA haplotype, a haplotype that has never been found in any other wolf population world-wide. Combined together, field and genetic data collected over 10 years corroborate the scenario of a natural expansion of wolves from the Italian source population. Furthermore, such a genetic approach is of conservation significance, since it has important consequences for management decisions. This first long-term report using non-invasive sampling demonstrates that long-distance dispersers are common, supporting the hypothesis that individuals may often attempt to colonize far from their native pack, even in the absence of suitable corridors across habitats characterized by intense human activities.
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
We study the families of periodic orbits of the spatial isosceles 3-body problem (for small enough values of the mass lying on the symmetry axis) coming via the analytic continuation method from periodic orbits of the circular Sitnikov problem. Using the first integral of the angular momentum, we reduce the dimension of the phase space of the problem by two units. Since periodic orbits of the reduced isosceles problem generate invariant two-dimensional tori of the nonreduced problem, the analytic continuation of periodic orbits of the (reduced) circular Sitnikov problem at this level becomes the continuation of invariant two-dimensional tori from the circular Sitnikov problem to the nonreduced isosceles problem, each one filled with periodic or quasi-periodic orbits. These tori are not KAM tori but just isotropic, since we are dealing with a three-degrees-of-freedom system. The continuation of periodic orbits is done in two different ways, the first going directly from the reduced circular Sitnikov problem to the reduced isosceles problem, and the second one using two steps: first we continue the periodic orbits from the reduced circular Sitnikov problem to the reduced elliptic Sitnikov problem, and then we continue those periodic orbits of the reduced elliptic Sitnikov problem to the reduced isosceles problem. The continuation in one or two steps produces different results. This work is merely analytic and uses the variational equations in order to apply Poincar´e’s continuation method.
Resumo:
The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.
Resumo:
We consider 2n masses located at the vertices of two nested regular polyhedra with the same number of vertices. Assuming that the masses in each polyhedron are equal, we prove that for each ratio of the masses of the inner and the outer polyhedron there exists a unique ratio of the length of the edges of the inner and the outer polyhedron such that the configuration is central.
Resumo:
Introduction: Ankle arthrodesis (AD) and total ankle replacement (TAR) are typical treatments for ankle osteoarthritis (AO). Despite clinical interest, there is a lack of their outcome evaluation using objective criteria. Gait analysis and plantar pressure assessment are appropriate to detect pathologies in orthopaedics but they are mostly used in lab with few gait cycles. In this study, we propose an ambulatory device based on inertial and plantar pressure sensors to compare the gait during long-distance trials between healthy subjects (H) and patients with AO or treated by AD and TAR. Methods: Our study included four groups: 11 patients with AO, 9 treated by TAR, 7 treated by AD and 6 control subjects. An ambulatory system (Physilog®, CH) was used for gait analysis; plantar pressure measurements were done using a portable insole (Pedar®-X, DE). The subjects were asked to walk 50 meters in two trials. Mean value and coefficient of variation of spatio-temporal gait parameters were calculated for each trial. Pressure distribution was analyzed in ten subregions of foot. All parameters were compared among the four groups using multi-level model-based statistical analysis. Results: Significant difference (p <0.05) with control was noticed for AO patients in maximum force in medial hindfoot and forefoot and in central forefoot. These differences were no longer significant in TAR and AD groups. Cadence and speed of all pathologic groups showed significant difference with control. Both treatments showed a significant improvement in double support and stance. TAR decreased variability in speed, stride length and knee ROM. Conclusions: In spite of a small sample size, this study showed that ankle function after AO treatments can be evaluated objectively based on plantar pressure and spatio-temporal gait parameters measured during unconstrained walking outside the lab. The combination of these two ambulatory techniques provides a promising way to evaluate foot function in clinics.
Resumo:
Three regular polyhedra are called nested if they have the same number of vertices n, the same center and the positions of the vertices of the inner polyhedron ri, the ones of the medium polyhedron Ri and the ones of the outer polyhedron Ri satisfy the relation Ri = ri and Ri = Rri for some scale factors R > > 1 and for all i = 1, . . . , n. We consider 3n masses located at the vertices of three nested regular polyhedra. We assume that the masses of the inner polyhedron are equal to m1, the masses of the medium one are equal to m2, and the masses of the outer one are equal to m3. We prove that if the ratios of the masses m2/m1 and m3/m1 and the scale factors and R satisfy two convenient relations, then this configuration is central for the 3n–body problem. Moreover there is some numerical evidence that, first, fixed two values of the ratios m2/m1 and m3/m1, the 3n–body problem has a unique central configuration of this type; and second that the number of nested regular polyhedra with the same number of vertices forming a central configuration for convenient masses and sizes is arbitrary.