990 resultados para soil environments
Resumo:
Thermal power stations using pulverized coal as fuel generate large quantities of fly ash as a byproduct, which has created environmental and disposal problems. Using fly ash for gainful applications will solve these problems. Among the various possible uses for fly ash, the most massive and effective utilization is in geotechnical engineering applications like backfill material, construction of embankments, as a subbase material, etc. A proper understanding of fly ash-soil mixes is likely to provide viable solutions for its large-scale utilization. Earlier studies initiated in the laboratory have resulted in a good understanding of the California Bearing Ratio (CBR) behavior of fly ash-soil mixes. Subsequently, in order to increase the CBR value, cement has been tried as an additive to fly ash-soil mixes. This paper reports the results.
Resumo:
Residually derived red soils occur in Bangalore District of Karnataka State, India. The porous and unsaturated nature of the red soils makes them susceptible to collapse on wetting under load. The present study analyses the collapse behaviour of an unsaturated bonded (undisturbed) red soil from Bangalore referenced to tests on samples in an unbonded (remoulded) state. A filter paper method was used to determine the matric suction of the bonded and unbonded specimens, and mercury intrusion porosimetry (MIP) was used to determine their soil structure. Analysis of the experimental results shows that bonding plays an important role in the collapse behaviour of the unsaturated residual soil. The results of the study also provide insight into the volume change behaviour of unsaturated bonded soils on wetting within and beyond the yield locus.
Resumo:
Seismic design of reinforced soil structures involves many uncertainties that arise from the backfill soil properties and tensile strength of the reinforcement which is not addressed in current design guidelines. This paper highlights the significance of variability in the internal stability assessment of reinforced soil structures. Reliability analysis is applied to estimate probability of failure and pseudo‐static approach has been used for the calculation of the tensile strength and length of the reinforcement needed to maintain the internal stability against tension and pullout failures. Logarithmic spiral failure surface has been considered in conjunction with the limit equilibrium method. Two modes of failure namely, tension failure and pullout failure have been considered. The influence of variations of the backfill soil friction angle, the tensile strength of reinforcement, horizontal seismic acceleration on the reliability index against tension failure and pullout failure of reinforced earth structure have been discussed.
Resumo:
Effect of aging on swelling and swell-shrink behavior of a compacted expansive soil is investigated in this paper. An expansive soil having a liquid limit of 100% is used for this purpose. Compacted specimens were prepared and aged for a predetermined number of days (7, 15, 30, and 90 days) to study their swelling and swell-shrink behavior. It has been shown that aging improves the resistance to compression of compacted specimens. The swelling potentials of specimens also decreased with aging. The dominant factors that influence the aging effects are the water content and degree of saturation at the beginning of the aging process. The changed behavior of aged specimens is attributed to particle rearrangements and formation of bonds, which affect the surface area absorbing water during swelling. The cyclic swell-shrink tests on aged specimens indicated that the differences in vertical displacement during the first swelling were eliminated in the subsequent cycles when specimens were shrunk more, but the aging effect was found to persist with cycles for specimens subjected to lower shrinkage magnitudes.
Resumo:
This paper examines the role of microstructure and matric suction in the collapse behavior of a compacted clay soil from Bangalore District in Karnataka State, India. The microstructure of the compacted specimens was examined by mercury intrusion porosimetry (MIP), and the ASTM Filter Paper Method was used to determine their matric suction. The microstructure and matric suction of the compacted specimens were changed by varying their compaction water content, dry density, and clay content (< 2 mum fraction). Experimental results showed that relative abundance of coarse (60 to 6 mum) pores was mainly affected by increasing the dry density of the specimens from 1.49 to 1.77 g/cm(3). The relative abundance of coarse and fine (0.01 to 0.002 mum) pores was affected by increasing the compaction water content from 10.6 to 26.4%. Variations in dry density, compaction water content, and clay contents notably affected the matric suction of the compacted specimens. The collapse behavior of the compacted specimens is explained from analysis of the MIP and matric suction results.
Resumo:
Existing soil nailing design methodologies are essentially based on limit equilibrium principles that together with a lumped factor of safety or a set of partial factors on the material parameters and loads account for uncertainties in design input parameter values. Recent trends in the development of design procedures for earth retaining structures are towards load and resistance factor design (LRFD). In the present study, a methodology for the use of LRFD in the context of soil-nail walls is proposed and a procedure to determine reliability-based load and resistance factors is illustrated for important strength limit states with reference to a 10 m high soil-nail wall. The need for separate partial factors for each limit state is highlighted, and the proposed factors are compared with those existing in the literature.
Resumo:
For the successful performance of a granular filter medium, existing design guidelines, which are based on the particle size distribution (PSD) characteristics of the base soil and filter medium, require two contradictory conditions to be satisfied, viz., soil retention and permeability. In spite of the wider applicability of these guidelines, it is well recognized that (i) they are applicable to a particular range of soils tested in the laboratory, (ii) the design procedures do not include performance-based selection criteria, and (iii) there are no means to establish the sensitivity of the important variables influencing performance. In the present work, analytical solutions are developed to obtain a factor of safety with respect to soil-retention and permeability criteria for a base soil - filter medium system subjected to a soil boiling condition. The proposed analytical solutions take into consideration relevant geotechnical properties such as void ratio, permeability, dry unit weight, effective friction angle, shape and size of soil particles, seepage discharge, and existing hydraulic gradient. The solution is validated through example applications and experimental results, and it is established that it can be used successfully in the selection as well as design of granular filters and can be applied to all types of base soils.
Resumo:
Mechanisms that control the volume changes behavior of foundation soils are well understood. The changes that occur in the behavior of soil due to migration of pollutants are not well understood. The extent of changes that occur in the presence of small concentration of contaminants can be predicted based on changes in the thickness of double layer and associated fabric changes. Interactions that occur with strong contaminants depends on the type of soil, type and concentration of contamination and duration of interaction etc It has been shown that different concentrations (1N and 4N) of sodium hydroxide solution causes abnormal changes on volume change behaviour of soil due to mineralogical changes. An attempt is made in this paper to stabilize contaminated soil using fly ash, after establishing its stability in alkali solutions. It was found that the effectiveness of fly ash to control the alkali induced heave increases with fly ash content incorporated into the soil. X-ray diffraction studies reveal that the mineralogical changes that occur in soil due to alkali interaction are inhibited by the presence of fly ash.
Resumo:
The paper brings out the role of calcium carbonate (CaCO3) on the volume change behaviour of natural black cotton soil with 1N sulfuric acid (H2SO4) as pore fluid. Natural black cotton soil contained predominantly montmorillonite [Ca0.2(Al,Mg)2Si4 O10 (OH)2 .4H2O] along with other minerals such as amesite [(Mg Fe)2 Al (Si Al)2 O5 (OH)4], kalsilite [KAlSiO4] and quartz [SiO2]. The calcitic soil, reacted with H2SO4 during consolidation testing, showed the presence of the new mineral yavapaiite [K Fe(SO4)2]. Consequently, the carbonate soil treated with 1N H2SO4 led to higher swell at seating load and more compression upon loading than the soil with no carbonate. The swelling increased with increase in the amount of carbonate present in the soil.
Resumo:
The transport processes of the dissolved chemicals in stratified or layered soils have been studied for several decades. In case of the solute transport through stratified layers, interface condition plays an important role in determining appropriate transport parameters. First‐ type and third‐ type interface conditions are generally used in the literature. A first‐type interface condition will result in a continuous concentration profile across the interface at the expense of solute mass balance. On the other hand, a discontinuity in concentration develops when a third‐ type interface condition is used. To overcome this problem, a combined first‐ and third‐ type condition at the interface has been widely employed which yields second‐ type condition. This results in a similar break‐through curve irrespective of the layering order, which is non‐physical. In this work, an interface condition is proposed which satisfies the mass balance implicitly and brings the distinction between the breakthrough curves for different layering sequence corroborating with the experimental observations. This is in disagreement with the earlier work by H. M. Selim and co‐workers but, well agreement with the hypothetical result by Bosma and van der Zee; and Van der Zee.
Resumo:
This paper elucidates the methodology of applying artificial neural network model (ANNM) to predict the percent swell of calcitic soil in sulphuric acid solutions, a complex phenomenon involving many parameters. Swell data required for modelling is experimentally obtained using conventional oedometer tests under nominal surcharge. The phases in ANN include optimal design of architecture, operation and training of architecture. The designed optimal neural model (3-5-1) is a fully connected three layer feed forward network with symmetric sigmoid activation function and trained by the back propagation algorithm to minimize a quadratic error criterion.The used model requires parameters such as duration of interaction, calcite mineral content and acid concentration for prediction of swell. The observed strong correlation coefficient (R2 = 0.9979) between the values determined by the experiment and predicted using the developed model demonstrates that the network can provide answers to complex problems in geotechnical engineering.
Resumo:
This paper describes some of the physical and numerical model tests of reinforced soil retaining walls subjected to dynamic excitation through uni-axial shaking tests. Models of retaining walls are constructed in a perspex box with geotextile reinforcement using the wrap around technique with dry sand backfill and instrumented with displacement sensors, accelerometers and soil pressure sensors. Numerical modelling of these shaking table tests is carried using FLAC. Numerical model is validated by comparing physical model results. Responses of wrap faced walls with different number of reinforcement layers are discussed from both the physical and numerical model tests. Results showed that the displacements are decreasing with the increase in number of reinforcement layers while acceleration amplifications are not affected significantly.