933 resultados para smear layer
Resumo:
Clearcutting is a common harvesting practice in many eastern hardwood forests. Among the vegetation strata of these forests, the herbaceous layer is potentially the most sensitive in its response to harvest-mediated disturbances and has the highest species diversity. Thus, it is important to understand the response of herbaceous layer diversity to forest harvesting. Previous work on clearcut and mature stands at the Fernow Experimental Forest (FEF), West Virginia, has shown that, although, harvesting did not alter appreciably herbaceous layer cover, it influenced the relationship of cover to biotic and abiotic factors, such as tree density and soil nutrients, respectively. The purpose of this study was to examine the response of species diversity of the herbaceous layer to harvesting at FEF. Fifteen circular, 0.04 ha sample plots were established in each of four watersheds (60 plots in total) representing two stand age categories: two watersheds with 20 years even-age stands following clearcutting and two watersheds with mature second growth stands. All woody stems ≥2.5 cm diameter at breast height were identified, tallied, and measured for diameter. The herbaceous layer was sampled by identifying all vascular plants ≤1 m in height and estimating cover for each species in each of 10 (1 m2) circular sub-plots per sample plot (600 sub-plots total). Species diversity for each plot was calculated from herbaceous layer data using the ln-based Shannon Index (H′) equation. Ten stand and soil variables also were measured on each plot. Mean herbaceous layer cover for clearcut versus mature stands was 27.2±14.3% versus 20.2±8.1% (P>0.05), respectively and mean H′ was 1.67±0.42 versus 1.55±0.48 (P>0.05), respectively. Herbaceous layer diversity was negatively correlated with cation exchange capacity and extractable Ca and Mg in the mineral soil in clearcut stands. In contrast, herbaceous layer diversity was positively correlated with soil organic matter and clay content. Although, 20 years of recovery after clearcutting did not have significant effects on the species diversity of the herbaceous layer when examining stand age means alone, harvesting did appear to influence the spatial relationships between herbaceous layer diversity and biotic factors (e.g. tree density) and abiotic factors (e.g. soil nutrients).
Resumo:
Despite a growing awareness that the herbaceous layer serves a special role in maintaining the structure and function of forests, this stratum remainsan underappreciated aspect of forest ecosystems. In this article I review and synthesize information concerning the herb layer’s structure,composition, and dynamics to emphasize its role as an integral component of forest ecosystems. Because species diversity is highest in the herb layeramong all forest strata, forest biodiversity is largely a function of the herb-layer community. Competitive interactions within the herb layer candetermine the initial success of plants occupying higher strata, including the regeneration of dominant overstory tree species. Furthermore, the herblayer and the overstory can become linked through parallel responses to similar environmental gradients. These relationships between strata varyboth spatially and temporally. Because the herb layer responds sensitively to disturbance across broad spatial and temporal scales, its dynamics canprovide important information regarding the site characteristics of forests, including patterns of past land-use practices. Thus, the herb layer has asignificance that belies its diminutive stature.
Resumo:
The role of irregular cortical firing in neuronal computation is still debated, and it is unclear how signals carried by fluctuating synaptic potentials are decoded by downstream neurons. We examined in vitro frequency versus current (f-I) relationships of layer 5 (L5) pyramidal cells of the rat medial prefrontal cortex (mPFC) using fluctuating stimuli. Studies in the somatosensory cortex show that L5 neurons become insensitive to input fluctuations as input mean increases and that their f-I response becomes linear. In contrast, our results show that mPFC L5 pyramidal neurons retain an increased sensitivity to input fluctuations, whereas their sensitivity to the input mean diminishes to near zero. This implies that the discharge properties of L5 mPFC neurons are well suited to encode input fluctuations rather than input mean in their firing rates, with important consequences for information processing and stability of persistent activity at the network level.
Resumo:
Basal dendrites receive the majority of synapses that contact neocortical pyramidal neurons, yet our knowledge of synaptic processing in these dendrites has been hampered by their inaccessibility for electrical recordings. A new approach to patch-clamp recordings enabled us to characterize the integrative properties of these cells. Despite the short physical length of rat basal dendrites, synaptic inputs were electrotonically remote from the soma (>30-fold excitatory postsynaptic potential (EPSP) attenuation) and back-propagating action potentials were significantly attenuated. Unitary EPSPs were location dependent, reaching large amplitudes distally (>8 mV), yet their somatic contribution was relatively location independent. Basal dendrites support sodium and NMDA spikes, but not calcium spikes, for 75% of their length. This suggests that basal dendrites, despite their proximity to the site of action potential initiation, do not form a single basal-somatic region but rather should be considered as a separate integrative compartment favoring two integration modes: subthreshold, location-independent summation versus local amplification of incoming spatiotemporally clustered information.
Resumo:
Calcium influx into the dendritic tufts of layer 5 neocortical pyramidal neurons modifies a number of important cellular mechanisms. It can trigger local synaptic plasticity and switch the firing properties from regular to burst firing. Due to methodological limitations, our knowledge about Ca2+ spikes in the dendritic tuft stems mostly from in vitro experiments. However, it has been speculated that regenerative Ca2+ events in the distal dendrites correlate with distinct behavioral states. Therefore it would be most desirable to be able to record these Ca2+ events in vivo, preferably in the behaving animal. Here, we present a novel approach for recording Ca2+ signals in the dendrites of populations of layer 5 pyramidal neurons in vivo, which ensures that all recorded fluorescence changes are due to intracellular Ca2+ signals in the apical dendrites. The method has two main features: 1) bolus loading of layer 5 with a membrane-permeant Ca2+ dye resulting in specific loading of pyramidal cell dendrites in the upper layers and 2) a fiberoptic cable attached to a gradient index lens and a prism reflecting light horizontally at 90 degrees to the angle of the apical dendrites. We demonstrate that the in vivo signal-to-noise ratio recorded with this relatively inexpensive and easy-to-implement fiberoptic-based device is comparable to conventional camera-based imaging systems used in vitro. In addition, the device is flexible and lightweight and can be used for recording Ca2+ signals in the distal dendritic tuft of freely behaving animals.
Resumo:
Layer 2/3 (L2/3) pyramidal neurons are the most abundant cells of the neocortex. Despite their key position in the cortical microcircuit, synaptic integration in dendrites of L2/3 neurons is far less understood than in L5 pyramidal cell dendrites, mainly because of the difficulties in obtaining electrical recordings from thin dendrites. Here we directly measured passive and active properties of the apical dendrites of L2/3 neurons in rat brain slices using dual dendritic-somatic patch-clamp recordings and calcium imaging. Unlike L5 cells, L2/3 dendrites displayed little sag in response to long current pulses, which suggests a low density of I(h) in the dendrites and soma. This was also consistent with a slight increase in input resistance with distance from the soma. Brief current injections into the apical dendrite evoked relatively short (half-width 2-4 ms) dendritic spikes that were isolated from the soma for near-threshold currents at sites beyond the middle of the apical dendrite. Regenerative dendritic potentials and large concomitant calcium transients were also elicited by trains of somatic action potentials (APs) above a critical frequency (130 Hz), which was slightly higher than in L5 neurons. Initiation of dendritic spikes was facilitated by backpropagating somatic APs and could cause an additional AP at the soma. As in L5 neurons, we found that distal dendritic calcium transients are sensitive to a long-lasting block by GABAergic inhibition. We conclude that L2/3 pyramidal neurons can generate dendritic spikes, sharing with L5 pyramidal neurons fundamental properties of dendritic excitability and control by inhibition.
Resumo:
SETTING: Kinshasa Province, Democratic Republic of Congo. OBJECTIVE: To identify and validate register-based indicators of acid-fast bacilli (AFB) microscopy quality. DESIGN: Selection of laboratories based on reliability and variation in routine smear rechecking results. Calculation of relative sensitivity (RS) compared to recheckers and its correlation coefficient (R) with candidate indicators based on a fully probabilistic analysis incorporating vague prior information using WinBUGS. RESULTS: The proportion of positive follow-up smears correlated well (median R 0.81, 95% credibility interval [CI] 0.58-0.93), and the proportion of first smear-positive cases fairly (median R 0.70, 95% CI 0.38-0.89) with RS. The proportions of both positive suspect and low positive case smears showed poor correlations (median R 0.27 and -0.22, respectively, with ranges including zero). CONCLUSIONS: The proportion of positives in follow-up smears is the most promising indicator of AFB smear sensitivity, while the proportion of positive suspects may be more indicative of accessibility and suspect selection. Both can be obtained from simple reports, and should be used for internal and external monitoring and as guidance for supervision. As proportion of low positive suspect smears and consistency within case series are more difficult to interpret, they should be used only on-site by laboratory professionals. All indicators require more research to define their optimal range in various settings.
Resumo:
The goal of this research is to provide a framework for vibro-acoustical analysis and design of a multiple-layer constrained damping structure. The existing research on damping and viscoelastic damping mechanism is limited to the following four mainstream approaches: modeling techniques of damping treatments/materials; control through the electrical-mechanical effect using the piezoelectric layer; optimization by adjusting the parameters of the structure to meet the design requirements; and identification of the damping material’s properties through the response of the structure. This research proposes a systematic design methodology for the multiple-layer constrained damping beam giving consideration to vibro-acoustics. A modeling technique to study the vibro-acoustics of multiple-layered viscoelastic laminated beams using the Biot damping model is presented using a hybrid numerical model. The boundary element method (BEM) is used to model the acoustical cavity whereas the Finite Element Method (FEM) is the basis for vibration analysis of the multiple-layered beam structure. Through the proposed procedure, the analysis can easily be extended to other complex geometry with arbitrary boundary conditions. The nonlinear behavior of viscoelastic damping materials is represented by the Biot damping model taking into account the effects of frequency, temperature and different damping materials for individual layers. A curve-fitting procedure used to obtain the Biot constants for different damping materials for each temperature is explained. The results from structural vibration analysis for selected beams agree with published closed-form results and results for the radiated noise for a sample beam structure obtained using a commercial BEM software is compared with the acoustical results of the same beam with using the Biot damping model. The extension of the Biot damping model is demonstrated to study MDOF (Multiple Degrees of Freedom) dynamics equations of a discrete system in order to introduce different types of viscoelastic damping materials. The mechanical properties of viscoelastic damping materials such as shear modulus and loss factor change with respect to different ambient temperatures and frequencies. The application of multiple-layer treatment increases the damping characteristic of the structure significantly and thus helps to attenuate the vibration and noise for a broad range of frequency and temperature. The main contributions of this dissertation include the following three major tasks: 1) Study of the viscoelastic damping mechanism and the dynamics equation of a multilayer damped system incorporating the Biot damping model. 2) Building the Finite Element Method (FEM) model of the multiple-layer constrained viscoelastic damping beam and conducting the vibration analysis. 3) Extending the vibration problem to the Boundary Element Method (BEM) based acoustical problem and comparing the results with commercial simulation software.
Resumo:
The emissions, filtration and oxidation characteristics of a diesel oxidation catalyst (DOC) and a catalyzed particulate filter (CPF) in a Johnson Matthey catalyzed continuously regenerating trap (CCRT ®) were studied by using computational models. Experimental data needed to calibrate the models were obtained by characterization experiments with raw exhaust sampling from a Cummins ISM 2002 engine with variable geometry turbocharging (VGT) and programmed exhaust gas recirculation (EGR). The experiments were performed at 20, 40, 60 and 75% of full load (1120 Nm) at rated speed (2100 rpm), with and without the DOC upstream of the CPF. This was done to study the effect of temperature and CPF-inlet NO2 concentrations on particulate matter oxidation in the CCRT ®. A previously developed computational model was used to determine the kinetic parameters describing the oxidation characteristics of HCs, CO and NO in the DOC and the pressure drop across it. The model was calibrated at five temperatures in the range of 280 – 465° C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec. The downstream HCs, CO and NO concentrations were predicted by the DOC model to within ±3 ppm. The HCs and CO oxidation kinetics in the temperature range of 280 - 465°C and an exhaust volumetric flow rate of 0.447 - 0.843 act-m3/sec can be represented by one ’apparent’ activation energy and pre-exponential factor. The NO oxidation kinetics in the same temperature and exhaust flow rate range can be represented by ’apparent’ activation energies and pre-exponential factors in two regimes. The DOC pressure drop was always predicted within 0.5 kPa by the model. The MTU 1-D 2-layer CPF model was enhanced in several ways to better model the performance of the CCRT ®. A model to simulate the oxidation of particulate inside the filter wall was developed. A particulate cake layer filtration model which describes particle filtration in terms of more fundamental parameters was developed and coupled to the wall oxidation model. To better model the particulate oxidation kinetics, a model to take into account the NO2 produced in the washcoat of the CPF was developed. The overall 1-D 2-layer model can be used to predict the pressure drop of the exhaust gas across the filter, the evolution of particulate mass inside the filter, the particulate mass oxidized, the filtration efficiency and the particle number distribution downstream of the CPF. The model was used to better understand the internal performance of the CCRT®, by determining the components of the total pressure drop across the filter, by classifying the total particulate matter in layer I, layer II, the filter wall, and by the means of oxidation i.e. by O2, NO2 entering the filter and by NO2 being produced in the filter. The CPF model was calibrated at four temperatures in the range of 280 – 465 °C, and exhaust volumetric flow rates of 0.447 – 0.843 act-m3/sec, in CPF-only and CCRT ® (DOC+CPF) configurations. The clean filter wall permeability was determined to be 2.00E-13 m2, which is in agreement with values in the literature for cordierite filters. The particulate packing density in the filter wall had values between 2.92 kg/m3 - 3.95 kg/m3 for all the loads. The mean pore size of the catalyst loaded filter wall was found to be 11.0 µm. The particulate cake packing densities and permeabilities, ranged from 131 kg/m3 - 134 kg/m3, and 0.42E-14 m2 and 2.00E-14 m2 respectively, and are in agreement with the Peclet number correlations in the literature. Particulate cake layer porosities determined from the particulate cake layer filtration model ranged between 0.841 and 0.814 and decreased with load, which is about 0.1 lower than experimental and more complex discrete particle simulations in the literature. The thickness of layer I was kept constant at 20 µm. The model kinetics in the CPF-only and CCRT ® configurations, showed that no ’catalyst effect’ with O2 was present. The kinetic parameters for the NO2-assisted oxidation of particulate in the CPF were determined from the simulation of transient temperature programmed oxidation data in the literature. It was determined that the thermal and NO2 kinetic parameters do not change with temperature, exhaust flow rate or NO2 concentrations. However, different kinetic parameters are used for particulate oxidation in the wall and on the wall. Model results showed that oxidation of particulate in the pores of the filter wall can cause disproportionate decreases in the filter pressure drop with respect to particulate mass. The wall oxidation model along with the particulate cake filtration model were developed to model the sudden and rapid decreases in pressure drop across the CPF. The particulate cake and wall filtration models result in higher particulate filtration efficiencies than with just the wall filtration model, with overall filtration efficiencies of 98-99% being predicted by the model. The pre-exponential factors for oxidation by NO2 did not change with temperature or NO2 concentrations because of the NO2 wall production model. In both CPF-only and CCRT ® configurations, the model showed NO2 and layer I to be the dominant means and dominant physical location of particulate oxidation respectively. However, at temperatures of 280 °C, NO2 is not a significant oxidizer of particulate matter, which is in agreement with studies in the literature. The model showed that 8.6 and 81.6% of the CPF-inlet particulate matter was oxidized after 5 hours at 20 and 75% load in CCRT® configuration. In CPF-only configuration at the same loads, the model showed that after 5 hours, 4.4 and 64.8% of the inlet particulate matter was oxidized. The increase in NO2 concentrations across the DOC contributes significantly to the oxidation of particulate in the CPF and is supplemented by the oxidation of NO to NO2 by the catalyst in the CPF, which increases the particulate oxidation rates. From the model, it was determined that the catalyst in the CPF modeslty increases the particulate oxidation rates in the range of 4.5 – 8.3% in the CCRT® configuration. Hence, the catalyst loading in the CPF of the CCRT® could possibly be reduced without significantly decreasing particulate oxidation rates leading to catalyst cost savings and better engine performance due to lower exhaust backpressures.