1000 resultados para smart catalysts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sulfur is a major poison to noble metal catalysts for deep aromatic hydrogenation in the petroleum refining industry. In order to study the sulfur resistance of Pd-based catalysts, a series of Pd, Cr, and PdCr catalysts supported on HY-Al2O3 were studied by NH3-TPD, pyridine-adsorption IR, TPR, IR spectra of adsorbed CO, and toluene hydrogenation in the presence of 3000 ppm sulfur as thiophene under the following conditions: 533-573 K, 4.2 MPa, and WHSV 4.0 h(-1). Cr has no influence on the acidity of the catalysts. TPR patterns and in situ IR spectra of adsorbed CO revealed a strong interaction between Cr and Pd, and the frequency shift of linear bonded CO on Pd indicates that the electron density of Pd decreases with the increase of the Cr/Pd atomic ratio. The catalytic performance of Pd, Cr, and PdCr catalysts shows that the sulfur resistance of Pd is strongly enhanced by Cr, and the activity reaches its maximum when the Cr/Pd atomic ratio equals 8. The active phase model "Pd particles decorated by Cr2O3" is postulated to explain the behavior of PdCr catalysts. (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different mechanisms for the formation of acetaldehyde and ethanol on the Rh-based catalysts were investigated by the TPR (temperature programmed reaction) method, and the active sites were studied by CO-TPD, TPSR (temperature programmed surface reaction of preadsorbed CO by H-2) and XPS techniques. The TPR results indicated that ethanol and acetaldehyde might be formed through different intermediates, whereas ethanol and methanol might result from the same intermediate. Results of CO-TPD, TPSR, and XPS showed that on the Rh-based catalyst, the structure of the active sites for the formation of C-2-oxygenates is ((RhxRhy+)-Rh-0)-O-Mn+ (M=Mn or Zr, x>>y, 2 less than or equal ton less than or equal to4). The tilt-adsorbed CO species is the main precursor for CO dissociation and the precursor for the formation of ethanol and methanol. Most of the linear and geminal adsorbed CO species desorbed below 500 K. Based on the suggested model of the active sites, detailed mechanisms for the formation of acetaldehyde and ethanol are proposed. Ethanol is formed by direct hydrogenation of the tilt-adsorbed CO molecules, followed by CH2 insertion into the surface CH2-O species and the succeeding hydrogenation step. Acetaldehyde is formed through CO insertion into the surface CH3-Rh species followed by hydrogenation, and the role of the promoters was to stabilize the intermediate of the surface acetyl species. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titania-silica (Ti/SiO2) and silica-titania-silica (Si/Ti/SiO2) catalysts were:prepared by chemical grafting using TiCl4 and tetraethyl orthosilicate (TEOS) as precursors and SiO2 as support. The prepared catalysts were characterized by UV Raman and visible Raman spectroscopies, XRD and the epoxidation of styrene; Ti/SiO2: catalyst grafted with only titanium species is not very active for epoxidation using H2O2 (30%), but is active and-selective when one uses tert-butyl hydroperoxide (TBHP). The catalyst grafted at high temperatures shows better epoxide selectivity. Si/Ti/SiO2 catalyst, the titanium-silica grafted further with TEOS, is active and selective for the epoxidation of styrene using either dilute H2O2 or TBHP, possibly due to the fact that the grafting of Ti/SiO2 with TEOS modifies the coordination structure of titanium and makes the titanium sites of Si-O-Ti-O-Si species less hydrophilic. A characteristic band at 1085cm(-1) due to Ti-O-Si species is detected for the grafted catalysts by UV resonance Raman spectroscopy. Reaction between TiCl4 and SiO2 at high temperatures favors the formation of Ti-O-Si species. Better activity and selectivity to epoxide,is found for the catalysts with more Ti-O-Si species. It is assumed that the active sites are the highly isolated Ti-O-Si species. For Si/Ti/SiO2 catalyst, the gas phase O-2 can participate in the catalytic oxidation of styrene when H2O2 is present ana:ii causes the formation of benzaldehyde. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of various kinds of additives as well as aging of the catalyst on the polymerization of styrene catalyzed by TiCl4/MgCl2-AlEt3 system have been studied. Experiments show that in toluene the isotacticity of polystyrene can be up to 83% for aged catalyst, whereas when the catalyst is not aged. non-stereospecific polymer is the main product. When PCl3 is used as an additive, the catalyst system gives high activity and isotacticity. The use of a mixture of AlEt3/H2O (1: 1 mole ratio) as a cocatalyst is also efficient. The catalyst [TiCl4-PCl3/MgCl2-AlEt3/H2O] displays high activity and product isotacticity (94%) with an average molecular weight up to 2 X 10(-6). When Co(acac)(3) is added to to [TiCl4/MgCl2-AlEt3] catalyst after it was aged, the isotacticity can be up to 97%. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Total oxidation of chlorinated aromatics on supported manganese oxide catalysts was investigated. The catalysts have been prepared by wet impregnation method and characterized by XRD and TPR. Among the catalysts with the supports of TiO(2), Al(2)O(3) and SiO(2), titania supported catalyst (MnO(x)/TiO(2)) gives the highest catalytic activity. MnO(x)/TiO(2) (Mn loading, 1.9 wt.%) shows the total oxidation of chlorobenzene at about 400 degreesC. The activity can be stable for over 82 h except for the first few hours. At lower Mn loadings for MnO(x)/TiO(2), only one reduction peak appears at about 400 degreesC due to the highly dispersed manganese oxide. With the increase of Mn loading, another reduction peak emerges at about 500 degreesC, which is close to the reduction peak of bulk Mn(2)O(3) at 520 degreesC. TPR of the used catalyst is totally different from that of the fresh one indicating that the chemical state of the active species is changed during the chlorobenzene oxidation. The characterization studies of MnO(x)/TiO(2) showed that the highly dispersed MnO(x) is the precursor of the active phase, which can be converted into the active phase, mainly oxychlorinated manganese (MnO(y)Cl(z)), under working conditions of chlorobenzene oxidation. (C) 2001 Elsevier Science B.V. All rights reserved.