968 resultados para silicate and luminescence
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A variety of platinum-group-minerals (PGM) have been found to occur associated with the chromitite and dunite layers in the Niquelandia igneous complex. Two genetically distinct populations of PGM have been identified corresponding to phases crystallized at high temperatures (primary), and others formed or modified during post-magmatic serpentinization and lateritic weathering (secondary). Primary PGM have been found in moderately serpentinized chromitite and dunite, usually included in fresh chromite grains or partially oxidized interstitial sulfides. Due to topographically controlled lateritic weathering, the silicate rocks are totally transformed to a smectite-kaolinite-garnierite-amorphous silica assemblage, while the chromite is changed into a massive aggregate of a spinel phase having low-Mg and a low Fe3+/Fe2+ ratio, intimately associated with Ti-minerals, amorphous Fe-hydroxides, goethite, hematite and magnetite. The PGM in part survive alteration, and in part are corroded as a result of deep chemical weathering. Laurite is altered to Ru-oxides or re-crystallizes together with secondary Mg-ilmenite. Other PGM, especially the Pt-Fe alloys, re-precipitate within the altered chromite together with kaolinite and Fe-hydroxides. Textural evidence suggests that re-deposition of secondary PGM took place during chromite alteration, controlled by variation of the redox conditions on a microscopic scale.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: The purpose of this in vivo study was to compare the effectiveness of a new light cured resin based dicalcium/tricalcium silicate pulp capping material (TheraCal LC, Bisco), pure Portland cement, resin based calcium hydroxide or glass ionomer in the healing of bacterially contaminated primate pulps. Study design: The experiment required four primates each having 12 teeth prepared with buccal penetrations into the pulpal tissues with an exposure of approximately 1.0 mm. The exposed pulps of the primate teeth were covered with cotton pellets soaked in a bacterial mixture consisting of microorganisms normally found in human pulpal abscesses. After removal of the pellet, hemostasis was obtained and the pulp capping agents applied. The light cured resin based pulp capping material (TheraCal LC) was applied to the pulpal tissue of twelve teeth with a needle tip syringe and light cured for 15 seconds. Pure Portland cement mixed with a 2% Chlorhexidine solution was placed on the exposed pulpal tissues of another twelve teeth. Twelve additional teeth had a base of GIC applied (Triage, Fuji VII GC America) and another twelve had a pulp cap with VLC DYCAL (Dentsply), a light cured calcium hydroxide resin based material. The pulp capping bases were then covered with a RMGI (Fuji II LC GC America). The tissue samples were collected at 4 weeks. The samples were deminerilized, sectioned, stained and histologically graded. Results: There were no statistically significant differences between the groups in regard to pulpal inflammation (H= 0.679, P=1.00). However, both the Portland cement and light cured TheraCal LC groups had significantly more frequent hard tissue bridge formation at 28 days than the GIC and VLC Dycal groups (H= 11.989, P=0.009). The measured thickness of the hard tissue bridges with the pure Portland and light cured TheraCal LC groups were statistically greater than that of the other two groups (H= 15.849, P=0.002). In addition, the occurrence of pulpal necrosis was greater with the GIC group than the others. Four premolars, one each treated according to the protocols were analyzed with a microCT machine. The premolar treated with the light cured TheraCal LC demonstrated a complete hard tissue bridge. The premolar treated with the GIC did not show a complete hard tissue bridge while the premolar treated with VLC Dycal had an incomplete bridge. The pure Portland with Chlorhexidine mixture created extensive hard tissue bridging.Conclusion: TheraCal LC applied to primate pulps created dentin bridges and mild inflammation acceptable for pulp capping.
Resumo:
The objective of this work was to evaluate the effects of silicon application adjusted with nitrogen fertilization via top-dressing on grain productivity, the silicon contents of the soil, in the plant tissue and nitrogen contents in dry and irrigated conditions. The experimental outlining was from designed blocks with subdivided parcels and four repetitions. The treatments consisted of culture system (dry and irrigated) and the under parcels by the combination of silicon (0 and 100 kg ha(-1)), in magnesium and calcium silicate form (with 23% of SiO2), and four doses of N (urea) via top-dressing (0, 30, 60 and 90 kg ha(-1)). Silicon application at sowing furrow was a viable technique because it provided significant increase in the content of this element in the root growth of rice. The application of silicon in the sowing furrow did not change the content of the element nor the nitrogen nutrition in rice plants. The nitrogen application reduced the silicon content and increased nitrogen nutrition in rice plants. Silicon application at sowing furrow provided no increase in rice grain yield. When there was no water limitation to nitrogen fertilization enhanced linearly on rice grain yield, whereas under water stress the effect of nitrogen fertilization was limited.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Tin dioxide (SnO2) thin films doped with Eu3+, are deposited by the sol-gel-dip-coating process on top of GaAs films, which is deposited by resistive evaporation on glass substrate. This heterojunction assembly presents luminescence from the rare-earth ion, unlike the SnO2 deposition directly on a glass substrate, where emissions from the Eu3+ transitions are absent. The Eu3+ transitions are clearly identified and are similar to the observation on SnO2 pressed powder (pellets), thermally treated at much higher temperatures. However, in the form of heterojunction films, the Eu emission comes along a broad band, located at higher energy compared to Eu3+ transitions, which is blue-shifted as the thermal annealing temperature increases. The size of nanocrystallites points toward quantum confinement or electron transfer between oxygen vacancies, originated from the disorder in the material, and trivalent rare-earth ions, which present acceptor-like character in this matrix. This electron transfer may relax for higher temperatures in the case of pellets, and the broad band is eliminated.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The preparation of Tm3+/Yb3+/Ho3+ co-doped CeO2 prepared by the precipitation method using ammonium hydroxide as a precursor is presented. By X-ray diffraction the materials show the phase-type of fluorite structure and the crystallite sizes were calculated by the Scherrer's equation. No other phase was observed evincing that the rare earth ions were inserted into the fluorite phase as substitutional or interstitial dopants. The microstrain calculated by the Williamson-Hall method do not show significant changes in their values, indicating that the inclusion of rare earths does not causes structural changes in the CeO2 used as a host matrix. All material showed intense upconversion emission at red and green region under excitation with diode laser at 980 nm. The color of emission changes from green to red with increasing excitation power pump. The materials showed suitable photoluminescent properties for applications as a laser source, solar cells, and great emitter at 800 nm. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Ba2SiO4: MnO43- luminescence is reported and compared to similar host lattices based on PO43-, VO43- and AsO43-, where Mn5+ substitutes for p(5+),V5+ Or AS(5+). The observed energy position of MnO43- 1E state in SiO44- is in accordance with interelectronic repulsion caused by Mn5+-O bond length. At 77 K the E-1 splitting is 119 cm(-1), which is in agreement with 1.8 degrees, the average deviation of O-M-O angles from the regular tetrahedron. These values are adjusted to Ca point symmetry. The vibronic-structure spectra evidenced a progression with a frequency assigned to the nu(2)(E) bending mode of MnO43-.
Resumo:
To investigate the ability of BioRoot RCS, a tricalcium silicate-based root canal sealer and AH Plus to effectively fill the root canals of contralateral teeth using three evaluation methods, and to investigate also the correlation between the methods. The prepared root canals of ten pairs of contralateral mandibular premolar teeth were filled with gutta-percha and sealer using lateral compaction. The percentage of voids within the root canal was assessed by micro-computed tomography, whilst sealing ability was investigated by fluid transport and leakage of fluorescent microspheres. The interaction of sealer with dentine, and sealer penetration were assessed by confocal microscopy. The void volume, fluid flow, microsphere leakage and sealer interaction with dentine for both materials were compared. Nonparametric (Mann-Whitney) tests were used to compare the % void and fluid transport of the two sealers. Spearman correlation was used to assess the pairwise relationships between the techniques. The level of significance was set to 0.05. BioRoot RCS exhibited significantly more percentage of voids than AH Plus. There was no difference in fluid flow and microsphere penetration. BioRoot RCS exhibited a different pattern of sealer penetration and interaction with the dentine walls compared to AH Plus. For both materials, the pairwise correlations between the three techniques were close to zero, indicating weak relationships. MicroCT analysis revealed a higher void volume for BioRoot RCS. The other techniques did not show a difference between the sealing ability of the sealers. The correlation between the three ex vivo methods of assessment was weak demonstrating their complementarity rather than their concordance.