924 resultados para shikimate pathway
Resumo:
4-Aryl-1,1,1-trifluorobut-3-en-2-ones ArCH[double bond, length as m-dash]CHCOCF3 (CF3-enones) react with arenes in excess of Brønsted superacids (TfOH, FSO3H) to give, stereoselectively, trans-1,3-diaryl-1-trifluoromethyl indanes in 35-85% yields. The reaction intermediates, the O-protonated ArCH[double bond, length as m-dash]CHC(OH(+))CF3 and the O,C-diprotonated ArHC(+)CH2C(OH(+))CF3 species, have been studied by means of (1)H, (13)C, (19)F NMR, and DFT calculations. Both types of the cations may participate in the reaction, depending on their electrophilicity and electron-donating properties of the arenes. The formation of CF3-indanes is a result of cascade reaction of protonated CF3-enones to form chemo-, regio- and stereoselectively three new C-C bonds. The obtained trans-1,3-diaryl-1-trifluoromethyl indanes were investigated as potential ligands for cannabinoid receptors CB1 and CB2 types. The most potent compound showed sub-micromolar affinity for both receptor subtypes with a 6-fold selectivity toward the CB2 receptor with no appreciable cytotoxicity toward SHSY5Y cells.
Resumo:
Anticancer therapies currently used in the clinic often can neither eradicate the tumor nor prevent disease recurrence due to tumor resistance. In this study, we showed that chemoresistance to pemetrexed, a multi-target anti-folate (MTA) chemotherapeutic agent for non-small cell lung cancer (NSCLC), is associated with a stem cell-like phenotype characterized by an enriched stem cell gene signature, augmented aldehyde dehydrogenase activity and greater clonogenic potential. Mechanistically, chemoresistance to MTA requires activation of epithelial-to-mesenchymal transition (EMT) pathway in that an experimentally induced EMT per se promotes chemoresistance in NSCLC and inhibition of EMT signaling by kaempferol renders the otherwise chemoresistant cancer cells susceptible to MTA. Relevant to the clinical setting, human primary NSCLC cells with an elevated EMT signaling feature a significantly enhanced potential to resist MTA, whereas concomitant administration of kaempferol abrogates MTA chemoresistance, regardless of whether it is due to an intrinsic or induced activation of the EMT pathway. Collectively, our findings reveal that a bona fide activation of EMT pathway is required and sufficient for chemoresistance to MTA and that kaempferol potently regresses this chemotherapy refractory phenotype, highlighting the potential of EMT pathway inhibition to enhance chemotherapeutic response of lung cancer.
Resumo:
Medulloblastoma is the most common malignant childhood brain tumor and is associated with a poor outcome. There is an urgent need to develop novel targeted therapeutic approaches for medulloblastoma, which will arise from an enhanced understanding of the disease at the molecular level. Medulloblastoma has been recognized to be a heterogeneous disease, and no recurrent cancer gene mutations have been found, although many of the mutations described so far affect key intracellular signaling pathways, such as sonic hedgehog (SHH) and Wnt/β-catenin. The PI3K/AKT/mTOR (PAM) signaling pathway controls key cellular responses, such as cell growth and proliferation, survival, migration and metabolism. Over the last decades, it has been recognized that this intracellular signaling pathway is frequently activated by genetic and epigenetic alterations in malignant brain tumors, including medulloblastoma. Clinical trials have started to evaluate the safety and efficacy of agents targeting this pathway in malignant brain tumors. Due to the complexity of the PAM signaling pathway, there remain significant difficulties in the development of novel therapeutic approaches. The future challenges in developing effective treatments for cancer patients include the development of predictive biomarkers and combinatorial approaches to effectively target multiple signal transduction pathways. In this review article, we will summarize the current knowledge about the role of PAM signaling in medulloblastoma and discuss the strategies that are currently being evaluated with targeted agents against this pathway.
Resumo:
The phosphoinositide 3-kinase (PI3K) family of signalling enzymes play a key role in the transduction of signals from activated cell surface receptors controlling cell growth and proliferation, survival, metabolism, and migration. The intracellular signalling pathway from activated receptors to PI3K and its downstream targets v-akt murine thymoma viral oncogene homolog (Akt) and mechanistic target of rapamycin (mTOR) is very frequently deregulated by genetic and epigenetic mechanisms in human cancer, including leukaemia and lymphoma. In the past decade, an arsenal of small molecule inhibitors of key enzymes in this pathway has been developed and evaluated in pre-clinical studies and clinical trials in cancer patients. These include pharmacological inhibitors of Akt, mTOR, and PI3K, some of which are approved for the treatment of leukaemia and lymphoma. The PI3K family comprises eight different catalytic isoforms in humans, which have been subdivided into three classes. Class I PI3K isoforms have been extensively studied in the context of human cancer, and the isoforms p110α and p110δ are validated drug targets. The recent approval of a p110δ-specific PI3K inhibitor (idelalisib/Zydelig®) for the treatment of selected B cell malignancies represents the first success in developing these molecules into anti-cancer drugs. In addition to PI3K inhibitors, mTOR inhibitors are intensively studied in leukaemia and lymphoma, and temsirolimus (Torisel®) is approved for the treatment of a type of lymphoma. Based on these promising results it is hoped that additional novel PI3K pathway inhibitors will in the near future be further developed into new drugs for leukaemia and lymphoma.
Resumo:
Colorectal cancer (CRC) develops through a multistep process and is modulated by inflammation. However, the inflammatory pathways that support intestinal tumors at different stages remain incompletely understood. Interleukin (IL)-33 signaling plays a role in intestinal inflammation, yet its contribution to the pathogenesis of CRC is unknown. Using immunohistochemistry on 713 resected human CRC specimens, we show here that IL-33 and its receptor ST2 are expressed in low-grade and early-stage human CRCs, and to a lesser extent in higher-grade and more advanced-stage tumors. In a mouse model of CRC, ST2-deficiency protects from tumor development. Moreover, bone marrow (BM) chimera studies indicate that engagement of the IL-33/ST2 pathway on both the radio-resistant and radio-sensitive compartment is essential for CRC development. Mechanistically, activation of IL-33/ST2 signaling compromises the integrity of the intestinal barrier and triggers the production of pro-tumorigenic IL-6 by immune cells. Together, this data reveals a tumor-promoting role of IL-33/ST2 signaling in CRC.
Resumo:
The intracellular protozoan parasites Theileria parva and Theileria annulata transform leucocytes by interfering with host cell signal transduction pathways. They differ from tumour cells, however, in that the transformation process can be entirely reversed by elimination of the parasite from the host cell cytoplasm using a specific parasiticidal drug. We investigated the state of activation of Akt/PKB, a downstream target of PI3-K-generated phosphoinositides, in Theileria-transformed leucocytes. Akt/PKB is constitutively activated in a PI3-K- and parasite-dependent manner, as judged by the specific phosphorylation of key residues, in vitro kinase assays and its cellular distribution. In previous work, we demonstrated that the parasite induces constitutive activation of the transcription factor NF-kappaB, providing protection against spontaneous apoptosis that accompanies transformation. In a number of other systems, a link has been established between the PI3-K-Akt/PKB pathway and NF-kappaB activation, resulting in protection against apoptosis. In Theileria-transformed leucocytes, activation of the NF-kappaB and the PI3-K-Akt/PKB pathways are not directly linked. The PI3-K-Akt/PKB pathway does not contribute to the persistent induction of IkappaBalpha phosphorylation, NF-kappaB DNA-binding or transcriptional activity. We show that the two pathways are downregulated with different kinetics when the parasite is eliminated from the host cell cytoplasm and that NF-kappaB-dependent protection against apoptosis is not dependent on a functional PI3-K-Akt/PKB pathway. We also demonstrate that Akt/PKB contributes, at least in part, to the proliferation of Theileria-transformed T cells.
Resumo:
Ethanolic fermentation is an ancient metabolic pathway. In plants, it is a major route of {ATP} production under anaerobic conditions. In addition, recent developments suggest that the pathway has important functions in the presence of oxygen. Both of the enzymes required for the production of acetaldehyde and ethanol, pyruvate decarboxylase and alcohol dehydrogenase, are highly abundant in pollen, resulting in fermentation in fully oxygenated cells. Acetaldehyde toxicity is an inevitable side effect of aerobic fermentation. Could acetaldehyde be the elusive pollen factor that contributes to male sterility in cmsT maize? The versatility of this ancient pathway is also illustrated by the induction of aerobic fermentation by environmental stress and activation of a defense response by overexpression of pyruvate decarboxylase.
Resumo:
Phosphatidylinositol 3-kinase (PI3K) generates membrane phospholipids that serve as second messengers to recruit signaling proteins to plasma membrane consequently regulating cell growth and survival. PI3K is a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit. Association of the p85 with other signal proteins is critical for induced PI3K activation. Activated PI3K, in turn, leads to signal flows through a variety of PI3K effectors including PDK1, AKT, GSK3, BAD, p70 S6K and NFκB. The PI3K pathway is under regulation by multiple signal proteins representing cross-talk between different signaling cascades. In this study, we have evaluated the role of protein kinase C family kinases on signaling through PI3K at multiple levels. Firstly, we observed that the action of PKC specific inhibitors like Ro-31-8220 and GF109203X was associated with an increased AKT phosphorylation and activity, suggesting that PKC kinases might play a negative role in the regulation of PI3K pathway. Then, we demonstrated the stimulation of AKT by PKC inhibition was dependent on functional PI3K enzyme and able to be transmitted to the AKT effector p70 S6K. Furthermore, we showed an inducible physical association between the PKCζ isotype and AKT, which was accompanied by an attenuated AKT activity. However, a kinase-dead form of PKC failed to affect AKT. In the second part of our research we revealed the ability of a different PKC family member, PKCδ to bind to the p85 subunit of PI3K in response to oxidative stress, a process requiring the activity of src tyrosine kinases. The interaction was demonstrated to be a direct and specific contact between the carboxyl terminal SH2 domain of p85 and tyrosine phosphorylated PKCδ. Several different types of agonists were capable to induce this association including tyrosine kinases and phorbol esters with PKCδ tyrosine phosphorylation being integral components. Finally, the PKCδ-PI3K complex was related to a reduction in the AKT phosphorylation induced by src. A kinase-deficient mutant of PKCδ was equally able to inhibit AKT signal as the wild type, indicative of a process independent of PKCδ catalytic activity. Altogether, our data illustrate different PKC isoforms regulating PI3K pathway at multiple levels, suggesting a mechanism to control signal flows through PI3K for normal cell activities. Although further investigation is required for full understanding of the regulatory mechanism, we propose that complex formation of signal proteins in PI3K pathway and specific PKC isoforms plays important role in their functional linkage. ^
Resumo:
During development, embryos must carefully integrate the processes of cell proliferation and differentiation. TH has been identified in Xenopus laevis as a gene product that functions in regulating differentiation of the neural ectoderm through its effect on cell proliferation. However, the mechanism and molecular pathway through which TH functions are not known. We identified the Xenopus FK506 binding protein homolog (XFKBP12) as a protein that interacted with TH in a yeast two-hybrid screen with TH as the bait. The direct and specific interaction between TH and XFKBP12 was supported by several tests including CO-IP, drug competence assay and mutagenesis analysis. To investigate the function of XFKBP12 during embryogenesis, we created an XFKBP12 loss of function embryo using antisense morpholino oligonucleotides (MO). XFKBP12 MO injected embryos displayed similar phenotypes as TH depleted embryos. We also demonstrated that both TH and XFKBP12 functioned through the TOR signaling pathway which is a target for cancer therapies. The interaction between TH and XFKBP 12 was required to regulate the proliferation of neural cells. Therefore, our study indicates that TH represents the endogenous ligand of XFKBP12 and together they coordinate neural cell proliferation and differentiation through the conserved rapamycin sensitive TOR pathway. Thus, understanding how this pathway functions in development will not only provide us important insights into the relationship between proliferation and differentiation, but help design rational cancer therapies targeting this pathway. ^
Resumo:
Non-melanoma skin cancer is the most frequently diagnosed malignancy in the United States of which basal cell carcinoma (BCC) accounts for 65%. It has recently been determined that deregulation of the sonic hedgehog (shh) pathway leads to the development of BCC. Shh, gli-1, gli-2 gli-3, ptc and smo are overexpressed in BCC and overexpression of these genes in the epidermis results in formation of BCC-like tumors. Despite these observations, the mechanisms by which the pathway controls epidermal homeostasis and the development of the malignant phentotype are unknown. This study assessed the role of the shh pathway in epidermal homeostasis through regulation of apoptosis and differentiation. ^ The anti-apoptotic protein, bcl-2 is overexpressed in BCC, however transcriptional regulators of bcl-2 in the epidermis are unknown. Transient transfection of primary keratinocytes with gli-1 resulted in an increase of bcl-2 expression. Database analysis revealed seven candidate gli binding sites on the bcl-2 promoter. Cotransfection of increasing amounts of gli-1 in keratinoycytes resulted in a corresponding dose-dependent increase in bcl-2 promoter luciferase activity. An N-terminal mutant of gli-3 inhibited gli-1 transactivation of the bcl-2 promoter. The region −428 to −420 was found to be important for gli-1 regulation through gel shift, luciferase assays and site-directed mutagenesis. ^ In order to assess the ability of the shh pathway to regulate keratinocyte differentiation, HaCaT keratinocytes overexpressing sonic hedgehog, were grown in organotypic raft culture. Overexpression of shh induced a basal cell phenotype compared to vector control, as evidenced by transmural staining of cytokeratin 14 and altered Ki67 staining. Shh also induced keratinocyte invasion into the underlying collagen. This was associated with increased phosphorylation of EGFR, jnk and raf and increased expression of c-jun, mmp-9 and Ki67. Interestingly, shh overexpression in HaCaTs did not induce the typical downstream effects of shh signaling, suggesting a gli-independent mechanism. Sonic hedgehog's ability to induce an invasive phenotype was found to be dependent on activation of the EGF pathway as inhibition of EGFR activity with AG1478 and c-225 was able to reduce the invasiveness of HaCaT shh keratinocytes, whereas treatment with EGF augmented the invasiveness of the HaCaT shh clones. ^ These studies reveal the importance of the sonic hedgehog pathway in epidermal homeostasis by regulation of apoptosis through bcl-2, and control of keratinocyte differentiation and invasion through activation of the EGF pathway. They further suggest potential mechanisms by which deregulation of the shh pathway may lead to the development of the malignant phenotype. ^
Resumo:
The retina is a specialized neuronal structure that transforms the optical image into electrical signals which are transmitted to the brain via the optic nerve. As part of the strategy to cover a stimulus range as broad as 10 log units, from dim starlight to bright sunlight, retinal circuits are broadly divided into rod and cone pathways, responsible for dark and light-adapted vision, respectively. ^ In this dissertation, confocal microscopy and immunocytochemical methods were combined to study the synaptic connectivity of the rod pathway from the level of individual synapses to whole populations of neurons. The study was focused on synaptic interactions at the rod bipolar terminal. The purpose is to understand the synaptic structure of the dyad synapse made by rod bipolar terminals, including the synaptic components and connections, and their physiological functions in the rod pathway. In addition, some additional components and connections of the rod pathway were also studied in these experiments. The major results can be summarized as following: At the dyad synapse of rod bipolar terminals, three postsynaptic components—processes of All amacrine cells and the varicosities of S1 or S2 amacrine cells express different glutamate receptor subunits, which may underlie the functional diversity of these postsynaptic neurons. A reciprocal feedback system is formed by rod bipolar terminals and S1/S2 amacrine cells. Analysis showed these two wide-field GABA amacrine cells have stereotyped synaptic connections with the appropriate morphology and distribution to perform specific functions. In addition, S1 and S2 cells have different coupling patterns and, in general, there is no coupling between the two types. Besides the classic rod pathway though rod bipolar cells and All amacrine cells, the finding of direct connections between certain types of OFF cone bipolar cells and rods indicates the presence of an alternative rod pathway in the rabbit retina. ^ In summary, this dissertation presents a detailed view of the connection and receptors at rod bipolar terminals. Based on the morphology, distribution and coupling, different functional roles were identified for S1 and S2 amacrine cells. Finally, an alternative to the classic rod pathway was found in the rabbit retina. ^
Resumo:
The uterine endometrium is a major target for the estrogen. However, the molecular basis of estrogen action in the endometrium is largely unknown. I have used two approaches to study the effects of estrogen on the endometrium. One approach involved the study of the interaction between estrogen and retinoic acid (RA) pathways in the endometrium. I have demonstrated that estrogen administration to rodents and estrogen replacement therapy (ERT) in postmenopausal women selectively induced the endometrial expression of retinaldehyde dehydrogenase II (RALDH2), a critical enzyme of RA biosynthesis. RALDH2 was expressed exclusively in the stromal cells, especially in the stroma adjacent to the luminal and glandular epithelia. The induction of RALDH2 by estrogen required estrogen receptor and occurred via a direct increase in RALDH2 transcription. Among the three RA receptors, estrogen selectively induced the expression of RARα. In parallel, estrogen also increased the utilization of all-trans retinol (the substrate for RA biosynthesis) and the expression of two RA-regulated marker genes, cellular retinoic acid binding protein II (CRABP2) and tissue transglutaminase (tTG) in the endometrium. Thus estrogen coordinately upregulated both the production and signaling of RA in both the rodent and human endometrium. This coordinate upregulation of RA system appeared to play a role in counterbalancing the stimulatory effects of estrogen on the endometrium, since the depletion of endogenous RA in mice led to an increase in estrogen-stimulated stromal proliferation and endometrial Akt phosphorylation. In addition, I have also used a systematic approach (DNA microarray) to categorize genes and pathways affected by the ERT in the endometrium of postmenopausal women and identified a novel estrogen-regulated gene EIG121. EIG121 was exclusively expressed in the glandular epithelial cells of the endometrium and induced by estrogen in vivo and in cultured cell lines. Compared with the normal endometrium, EIG121 was highly overexpressed in type 1 endometrial cancer, but profoundly suppressed in type 2 endometrial tumors. Taken together, these studies suggested that estrogen regulates the expression of many genes of both the pro-proliferative and anti-proliferative pathways and the abnormality of these pathways may increase the risks for estrogen-dependent endometrial hyperplasia and endometrial cancer. ^
Resumo:
Comparison of gene expressing profiles between gliomas with different grades revealed frequent overexpression of insulin-like growth factor binding protein 2 (IGFBP2) in glioblastomas (GBM), in which uncontrolled cell proliferation, angiogenesis, invasion and anti-apoptosis are hallmarks. Using the glia-specific gene transfer transgenic mouse and the stable LN229(BP2) GBM cell lines, we found that IGFBP2 by itself cannot transform cells in vitro and in vivo. IGFBP2 had growth inhibitory effects on mouse primary neural progenitors, but overexpression of IGFBP2 had no effect on GBM cells. ^ Although IGFBP2 does not initiate gliomagenesis, using tissue array technology, we observed strong correlation between IGFBP2 overexpression and VEGF up-regulation in human diffuse gliomas. Furthermore, overexpression of IGFBP2 in GBM cells not only enhanced VEGF expression but also increased the malignant potential of U87 MG cells in our angiogenesis xenograft animal model. ^ In parallel to these studies, using established stable SNB19 GBM cells that overexpress IGFBP2, we found that IGFBP2 significantly increased invasion by induction of matrix metalloproteinase-2 (MMP-2) as well as other invasion related genes, providing evidence that IGFBP2 contributes to glioma progression in part by enhancing MMP-2 gene transcription and in turn tumor cell invasion. ^ Finally, we found that primary filial cells infected with an anti-sense IGFBP2 construct have markedly increased sensitivity to γ irradiation and reduced Akt activation. On the other hand, SNB19(BP2) stable lines have consistently increased levels of Akt and NFkB activation, suggesting that one possible mechanism for anti-apoptosic function of IGFBP2 is through the activation of Akt and NFkB. Beside this, what is especially interesting is the finding that Akt protein was cleaved and inactivated during apoptosis by caspases, and IGFBP2 can prevent Akt cleavage, revealing another possible mechanism through it IGFBP2 exhibit strong antiapoptotic effects. Our data showed that IGFBP2 is a specific substrate for caspase-3, raising the possibility that IGFBP2 may inhibit apoptosis by a suicide mechanism. ^ In summary, using cellular, genomics, and molecular approaches, this thesis documented the potential roles of IGFBP2 in glioma progression. Our findings shed light on an important biological aspect of glioma progression and may provide new insights useful for the design of novel mechanism-based therapies for GBM. ^
Resumo:
The canonical and non-canonical Wnt signaling pathways appear to interact with one another as a network in development, or when hyper-activated, in the progression of disease. A much studied key mediator of the canonical Wnt pathway, β-catenin, is characterized by a central armadillo-repeat domain that engages in multiple protein-protein interactions, such as those with cadherins functioning at cell-cell contact regions. In the nucleus, β-catenin forms a complex with the repressor TCF/LEF, promoting the activation of genes participating in processes such as proliferation, differentiation and stem cell survival. Somewhat similarly, the p120-catenin binds the distinct transcriptional repressor Kaiso, relieving Kaiso-mediated repression to promote gene activation. Here, employing Xenopus laevis, I report upon both downstream and upstream aspects of the p120-catenin/Kaiso pathway which was previously poorly understood. I first show that Kaiso, a BTB/POZ zinc-finger family member, directly represses canonical Wnt gene targets (Siamois, c-Fos, Cyclin-D1 and c-Myc) in conjunction with TCF. Depletion or dominant-negative inhibition of xKaiso results in Siamois de-repression, while xKaiso over-expression induces additional Siamois repression through recruitment of N-CoR co-repressor and chromatin modifications. Functional interdependencies are further corroborated by the capacity of Kaiso to suppress β-catenin-induced axis duplication. Thus, my work inter-relates the p120-catenin/Kaiso and β-catenin/TCF pathways at the level of specific gene promoters important in development and cancer progression. Regarding upstream aspects of the p120-catenin/Kaiso pathway, I collaboratively identified p120 in association with Frodo, a protein previously identified as a component of the canonical (β-catenin dependent) Wnt pathway. I determined that canonical Wnt signals result in Frodo-mediated stabilization of p120-catenin, resulting in the sequestration of Kaiso to the cytoplasm and thereby the activation (relief of repression) of gene targets. Developmental evidence supporting this view included findings that Frodo has the capacity to partially rescue Kaiso over-expression phenotypes in early Xenopus embryos. Taken together, my studies point to the convergence of p120-catenin/Kaiso and β-catenin/TCF signaling pathways at the level of gene transcription as well as at more upstream points during vertebrate development. ^