939 resultados para sensory analysis, utilization of byproduct
Resumo:
Introduction 1.1 Occurrence of polycyclic aromatic hydrocarbons (PAH) in the environment Worldwide industrial and agricultural developments have released a large number of natural and synthetic hazardous compounds into the environment due to careless waste disposal, illegal waste dumping and accidental spills. As a result, there are numerous sites in the world that require cleanup of soils and groundwater. Polycyclic aromatic hydrocarbons (PAHs) are one of the major groups of these contaminants (Da Silva et al., 2003). PAHs constitute a diverse class of organic compounds consisting of two or more aromatic rings with various structural configurations (Prabhu and Phale, 2003). Being a derivative of benzene, PAHs are thermodynamically stable. In addition, these chemicals tend to adhere to particle surfaces, such as soils, because of their low water solubility and strong hydrophobicity, and this results in greater persistence under natural conditions. This persistence coupled with their potential carcinogenicity makes PAHs problematic environmental contaminants (Cerniglia, 1992; Sutherland, 1992). PAHs are widely found in high concentrations at many industrial sites, particularly those associated with petroleum, gas production and wood preserving industries (Wilson and Jones, 1993). 1.2 Remediation technologies Conventional techniques used for the remediation of soil polluted with organic contaminants include excavation of the contaminated soil and disposal to a landfill or capping - containment - of the contaminated areas of a site. These methods have some drawbacks. The first method simply moves the contamination elsewhere and may create significant risks in the excavation, handling and transport of hazardous material. Additionally, it is very difficult and increasingly expensive to find new landfill sites for the final disposal of the material. The cap and containment method is only an interim solution since the contamination remains on site, requiring monitoring and maintenance of the isolation barriers long into the future, with all the associated costs and potential liability. A better approach than these traditional methods is to completely destroy the pollutants, if possible, or transform them into harmless substances. Some technologies that have been used are high-temperature incineration and various types of chemical decomposition (for example, base-catalyzed dechlorination, UV oxidation). However, these methods have significant disadvantages, principally their technological complexity, high cost , and the lack of public acceptance. Bioremediation, on the contrast, is a promising option for the complete removal and destruction of contaminants. 1.3 Bioremediation of PAH contaminated soil & groundwater Bioremediation is the use of living organisms, primarily microorganisms, to degrade or detoxify hazardous wastes into harmless substances such as carbon dioxide, water and cell biomass Most PAHs are biodegradable unter natural conditions (Da Silva et al., 2003; Meysami and Baheri, 2003) and bioremediation for cleanup of PAH wastes has been extensively studied at both laboratory and commercial levels- It has been implemented at a number of contaminated sites, including the cleanup of the Exxon Valdez oil spill in Prince William Sound, Alaska in 1989, the Mega Borg spill off the Texas coast in 1990 and the Burgan Oil Field, Kuwait in 1994 (Purwaningsih, 2002). Different strategies for PAH bioremediation, such as in situ , ex situ or on site bioremediation were developed in recent years. In situ bioremediation is a technique that is applied to soil and groundwater at the site without removing the contaminated soil or groundwater, based on the provision of optimum conditions for microbiological contaminant breakdown.. Ex situ bioremediation of PAHs, on the other hand, is a technique applied to soil and groundwater which has been removed from the site via excavation (soil) or pumping (water). Hazardous contaminants are converted in controlled bioreactors into harmless compounds in an efficient manner. 1.4 Bioavailability of PAH in the subsurface Frequently, PAH contamination in the environment is occurs as contaminants that are sorbed onto soilparticles rather than in phase (NAPL, non aqueous phase liquids). It is known that the biodegradation rate of most PAHs sorbed onto soil is far lower than rates measured in solution cultures of microorganisms with pure solid pollutants (Alexander and Scow, 1989; Hamaker, 1972). It is generally believed that only that fraction of PAHs dissolved in the solution can be metabolized by microorganisms in soil. The amount of contaminant that can be readily taken up and degraded by microorganisms is defined as bioavailability (Bosma et al., 1997; Maier, 2000). Two phenomena have been suggested to cause the low bioavailability of PAHs in soil (Danielsson, 2000). The first one is strong adsorption of the contaminants to the soil constituents which then leads to very slow release rates of contaminants to the aqueous phase. Sorption is often well correlated with soil organic matter content (Means, 1980) and significantly reduces biodegradation (Manilal and Alexander, 1991). The second phenomenon is slow mass transfer of pollutants, such as pore diffusion in the soil aggregates or diffusion in the organic matter in the soil. The complex set of these physical, chemical and biological processes is schematically illustrated in Figure 1. As shown in Figure 1, biodegradation processes are taking place in the soil solution while diffusion processes occur in the narrow pores in and between soil aggregates (Danielsson, 2000). Seemingly contradictory studies can be found in the literature that indicate the rate and final extent of metabolism may be either lower or higher for sorbed PAHs by soil than those for pure PAHs (Van Loosdrecht et al., 1990). These contrasting results demonstrate that the bioavailability of organic contaminants sorbed onto soil is far from being well understood. Besides bioavailability, there are several other factors influencing the rate and extent of biodegradation of PAHs in soil including microbial population characteristics, physical and chemical properties of PAHs and environmental factors (temperature, moisture, pH, degree of contamination). Figure 1: Schematic diagram showing possible rate-limiting processes during bioremediation of hydrophobic organic contaminants in a contaminated soil-water system (not to scale) (Danielsson, 2000). 1.5 Increasing the bioavailability of PAH in soil Attempts to improve the biodegradation of PAHs in soil by increasing their bioavailability include the use of surfactants , solvents or solubility enhancers.. However, introduction of synthetic surfactant may result in the addition of one more pollutant. (Wang and Brusseau, 1993).A study conducted by Mulder et al. showed that the introduction of hydropropyl-ß-cyclodextrin (HPCD), a well-known PAH solubility enhancer, significantly increased the solubilization of PAHs although it did not improve the biodegradation rate of PAHs (Mulder et al., 1998), indicating that further research is required in order to develop a feasible and efficient remediation method. Enhancing the extent of PAHs mass transfer from the soil phase to the liquid might prove an efficient and environmentally low-risk alternative way of addressing the problem of slow PAH biodegradation in soil.
Resumo:
The hydrogen production in the green microalga Chlamydomonas reinhardtii was evaluated by means of a detailed physiological and biotechnological study. First, a wide screening of the hydrogen productivity was done on 22 strains of C. reinhardtii, most of which mutated at the level of the D1 protein. The screening revealed for the first time that mutations upon the D1 protein may result on an increased hydrogen production. Indeed, productions ranged between 0 and more than 500 mL hydrogen per liter of culture (Torzillo, Scoma et al., 2007a), the highest producer (L159I-N230Y) being up to 5 times more performant than the strain cc124 widely adopted in literature (Torzillo, Scoma, et al., 2007b). Improved productivities by D1 protein mutants were generally a result of high photosynthetic capabilities counteracted by high respiration rates. Optimization of culture conditions were addressed according to the results of the physiological study of selected strains. In a first step, the photobioreactor (PBR) was provided with a multiple-impeller stirring system designed, developed and tested by us, using the strain cc124. It was found that the impeller system was effectively able to induce regular and turbulent mixing, which led to improved photosynthetic yields by means of light/dark cycles. Moreover, improved mixing regime sustained higher respiration rates, compared to what obtained with the commonly used stir bar mixing system. As far as the results of the initial screening phase are considered, both these factors are relevant to the hydrogen production. Indeed, very high energy conversion efficiencies (light to hydrogen) were obtained with the impeller device, prooving that our PBR was a good tool to both improve and study photosynthetic processes (Giannelli, Scoma et al., 2009). In the second part of the optimization, an accurate analysis of all the positive features of the high performance strain L159I-N230Y pointed out, respect to the WT, it has: (1) a larger chlorophyll optical cross-section; (2) a higher electron transfer rate by PSII; (3) a higher respiration rate; (4) a higher efficiency of utilization of the hydrogenase; (5) a higher starch synthesis capability; (6) a higher per cell D1 protein amount; (7) a higher zeaxanthin synthesis capability (Torzillo, Scoma et al., 2009). These information were gathered with those obtained with the impeller mixing device to find out the best culture conditions to optimize productivity with strain L159I-N230Y. The main aim was to sustain as long as possible the direct PSII contribution, which leads to hydrogen production without net CO2 release. Finally, an outstanding maximum rate of 11.1 ± 1.0 mL/L/h was reached and maintained for 21.8 ± 7.7 hours, when the effective photochemical efficiency of PSII (ΔF/F'm) underwent a last drop to zero. If expressed in terms of chl (24.0 ± 2.2 µmoles/mg chl/h), these rates of production are 4 times higher than what reported in literature to date (Scoma et al., 2010a submitted). DCMU addition experiments confirmed the key role played by PSII in sustaining such rates. On the other hand, experiments carried out in similar conditions with the control strain cc124 showed an improved final productivity, but no constant PSII direct contribution. These results showed that, aside from fermentation processes, if proper conditions are supplied to selected strains, hydrogen production can be substantially enhanced by means of biophotolysis. A last study on the physiology of the process was carried out with the mutant IL. Although able to express and very efficiently utilize the hydrogenase enzyme, this strain was unable to produce hydrogen when sulfur deprived. However, in a specific set of experiments this goal was finally reached, pointing out that other than (1) a state 1-2 transition of the photosynthetic apparatus, (2) starch storage and (3) anaerobiosis establishment, a timely transition to the hydrogen production is also needed in sulfur deprivation to induce the process before energy reserves are driven towards other processes necessary for the survival of the cell. This information turned out to be crucial when moving outdoor for the hydrogen production in a tubular horizontal 50-liter PBR under sunlight radiation. First attempts with laboratory grown cultures showed that no hydrogen production under sulfur starvation can be induced if a previous adaptation of the culture is not pursued outdoor. Indeed, in these conditions the hydrogen production under direct sunlight radiation with C. reinhardtii was finally achieved for the first time in literature (Scoma et al., 2010b submitted). Experiments were also made to optimize productivity in outdoor conditions, with respect to the light dilution within the culture layers. Finally, a brief study of the anaerobic metabolism of C. reinhardtii during hydrogen oxidation has been carried out. This study represents a good integration to the understanding of the complex interplay of pathways that operate concomitantly in this microalga.
Resumo:
Antibody microarrays are of great research interest because of their potential application as biosensors for high-throughput protein and pathogen screening technologies. In this active area, there is still a need for novel structures and assemblies providing insight in binding interactions such as spherical and annulus-shaped protein structures, e.g. for the utilization of curved surfaces for the enhanced protein-protein interactions and detection of antigens. Therefore, the goal of the presented work was to establish a new technique for the label-free detection of bio-molecules and bacteria on topographically structured surfaces, suitable for antibody binding.rnIn the first part of the presented thesis, the fabrication of monolayers of inverse opals with 10 μm diameter and the immobilization of antibodies on their interior surface is described. For this purpose, several established methods for the linking of antibodies to glass, including Schiff bases, EDC/S-NHS chemistry and the biotin-streptavidin affinity system, were tested. The employed methods included immunofluorescence and image analysis by phase contrast microscopy. It could be shown that these methods were not successful in terms of antibody immobilization and adjacent bacteria binding. Hence, a method based on the application of an active-ester-silane was introduced. It showed promising results but also the need for further analysis. Especially the search for alternative antibodies addressing other antigens on the exterior of bacteria will be sought-after in the future.rnAs a consequence of the ability to control antibody-functionalized surfaces, a new technique employing colloidal templating to yield large scale (~cm2) 2D arrays of antibodies against E. coli K12, eGFP and human integrin αvβ3 on a versatile useful glass surface is presented. The antibodies were swept to reside around the templating microspheres during solution drying, and physisorbed on the glass. After removing the microspheres, the formation of annuli-shaped antibody structures was observed. The preserved antibody structure and functionality is shown by binding the specific antigens and secondary antibodies. The improved detection of specific bacteria from a crude solution compared to conventional “flat” antibody surfaces and the setting up of an integrin-binding platform for targeted recognition and surface interactions of eukaryotic cells is demonstrated. The structures were investigated by atomic force, confocal and fluorescence microscopy. Operational parameters like drying time, temperature, humidity and surfactants were optimized to obtain a stable antibody structure.
Resumo:
This thesis is developed in the contest of Ritmare project WP1, which main objective is the development of a sustainable fishery through the identification of populations boundaries in commercially important species in Italian Seas. Three main objectives are discussed in order to help reach the main purpose of identification of stock boundaries in Parapenaeus longirostris: 1 -Development of a representative sampling design for Italian seas; 2 -Evaluation of 2b-RAD protocol; 3 -Investigation of populations through biological data analysis. First of all we defined and accomplished a sampling design which properly represents all Italian seas. Then we used information and data about nursery areas distribution, abundance of populations and importance of P. longirostris in local fishery, to develop an experimental design that prioritize the most important areas to maximize the results with actual project funds. We introduced for the first time the use of 2b-RAD on this species, a genotyping method based on sequencing the uniform fragments produced by type IIB restriction endonucleases. Thanks to this method we were able to move from genetics to the more complex genomics. In order to proceed with 2b-RAD we performed several tests to identify the best DNA extraction kit and protocol and finally we were able to extract 192 high quality DNA extracts ready to be processed. We tested 2b-RAD with five samples and after high-throughput sequencing of libraries we used the software “Stacks” to analyze the sequences. We obtained positive results identifying a great number of SNP markers among the five samples. To guarantee a multidisciplinary approach we used the biological data associated to the collected samples to investigate differences between geographical samples. Such approach assures continuity with other project, for instance STOCKMED, which utilize a combination of molecular and biological analysis as well.
Resumo:
Virgin olive oil(VOO) is a product characterized by high economic and nutritional values, because of its superior sensory characteristics and minor compounds (phenols and tocopherols) contents. Since the original quality of VOO may change during its storage, this study aimed to investigate the influence of different storage and shipment conditions on the quality of VOO, by studying different solutions such as filtration, dark storage and shipment inside insulated containers to protect it. Different analytical techniques were used to follow-up the quality changes during virgin olive oil storage and simulated shipments, in terms of basic quality parameters, sensory analysis and evaluation of minor components (phenolic compounds, diglycerides, volatile compounds). Four main research streams were presented in this PhD thesis: The results obtained from the first experimental section revealed that the application of filtration and/or clarification can decrease the unavoidable quality loss of the oil samples during storage, in comparison with unfiltered oil samples. The second section indicated that the virgin olive oil freshness, evaluated by diglycerides content, was mainly affected by the storage time and temperature. The third section revealed that fluctuation in temperature during storage may adversely affect the virgin olive oil quality, in terms of hydrolytic rancidity and oxidation quality. The fourth section showed that virgin olive oil shipped inside insulated containers showed lower hydrolytic and oxidation degradation than those without insulation cover. Overall, this PhD thesis highlighted that application of adequate treatment, such as filtration or clarification, in addition to a good protection against other external variables, such as temperature and light, will improve the stability of virgin olive oil during storage.
Resumo:
The central objective of this work was to generate weakly coordinating cations of unprecedented molecular size providing an inherently stable hydrophobic shell around a central charge. It was hypothesized that divergent dendritic growth by means of thermal [4+2] Diels-Alder cycloaddition might represent a feasible synthetic method to circumvent steric constraints and enable a drastic increase in cation size.rnThis initial proposition could be verified: applying the divergent dendrimer synthesis to an ethynyl-functionalized tetraphenylphosphonium derivative afforded monodisperse cations with precisely nanoscopic dimensions for the first time. Furthermore, the versatile nature of the applied cascade reactions enabled a throughout flexible design and structural tuning of the desired target cations. The specific surface functionalization as well as the implementation of triazolyl-moieties within the dendrimer scaffold could be addressed by sophisticated variation of the employed building block units (see chapter 3). rnDue to the steric screening provided by their large, hydrophobic and shape-persistent polyphenylene shells, rigidly dendronized cations proved more weakly coordinating compared to their non-dendronized analogues. This hypothesis has been experimentally confirmed by means of dielectric spectroscopy (see chapter 4). It was demonstrated for a series of dendronized borate salts that the degree of ion dissociation increased with the size of the cations. The utilization of the very large phosphonium cations developed within this work almost achieved to separate the charge carriers about the Bjerrum length in solvents of low polarity, which was reflected by approaching near quantitative ion dissociation even at room temperature. In addition to effect the electrolyte behavior in solution, the steric enlargement of ions could be visualized by means of several crystal structure analyses. Thus an insight into lattice packing under the effect of extraordinary large cations could be gathered. rnAn essential theme of this work focused on the application of benzylphosphonium salts in the classical Wittig reaction, where the concept of dendronization served as synthetic means to introduce an exceptionally large polyphenylene substituent at the -position. The straightforward influence of this unprecedented bulky group on the Wittig stereochemistry was investigated by NMR-analysis of the resulting alkenes. Based on the obtained data a valuable explanation for the origin of the observed selectivity was brought in line with the up-to-date operating [2+2] cycloaddition mechanism. Furthermore, a reliable synthesis protocol for unsymmetrically substituted polyphenylene alkenes and stilbenes was established by the design of custom-built polyphenylene precursors (see chapter 5).rnFinally, fundamental experiments to functionalize a polymer chain with sterically shielded ionic groups either in the pending or internal position were outlined within this work. Thus, inherently hydrophobic polysalts shall be formed so that future research can invesigate their physical properties with regard to counter ion condensation and charge carrier mobility.rnIn summary, this work demonstrates how the principles of dendrimer chemistry can be applied to modify and specifically tailor the properties of salts. The numerously synthesized dendrimer-ions shown herein represent a versatile interface between classic organic and inorganic electrolytes, and defined macromolecular structures in the nanometer-scale. Furthermore the particular value of polyphenylene dendrimers in terms of a broad applicability was illustrated. This work accomplished in an interdisciplinary manner to give answer to various questions such as structural modification of ions, the resulting influence on the electrolyte behavior, as well as the stereochemical control of organic syntheses via polyphenylene phosphonium salts. rn
Resumo:
With the outlook of improving seismic vulnerability assessment for the city of Bishkek (Kyrgyzstan), the global dynamic behaviour of four nine-storey r.c. large-panel buildings in elastic regime is studied. The four buildings were built during the Soviet era within a serial production system. Since they all belong to the same series, they have very similar geometries both in plan and in height. Firstly, ambient vibration measurements are performed in the four buildings. The data analysis composed of discrete Fourier transform, modal analysis (frequency domain decomposition) and deconvolution interferometry, yields the modal characteristics and an estimate of the linear impulse response function for the structures of the four buildings. Then, finite element models are set up for all four buildings and the results of the numerical modal analysis are compared with the experimental ones. The numerical models are finally calibrated considering the first three global modes and their results match the experimental ones with an error of less then 20%.
Resumo:
OBJECTIVE: Dual antiplatelet therapy with clopidogrel plus acetylsalicylic acid (ASA) is superior to ASA alone in patients with acute coronary syndromes and in those undergoing percutaneous coronary intervention. We sought to determine whether clopidogrel plus ASA conferred benefit on limb outcomes over ASA alone in patients undergoing below-knee bypass grafting. METHODS: Patients undergoing unilateral, below-knee bypass graft for atherosclerotic peripheral arterial disease (PAD) were enrolled 2 to 4 days after surgery and were randomly assigned to clopidogrel 75 mg/day plus ASA 75 to 100 mg/day or placebo plus ASA 75 to 100 mg/day for 6 to 24 months. The primary efficacy endpoint was a composite of index-graft occlusion or revascularization, above-ankle amputation of the affected limb, or death. The primary safety endpoint was severe bleeding (Global Utilization of Streptokinase and Tissue plasminogen activator for Occluded coronary arteries [GUSTO] classification). RESULTS: In the overall population, the primary endpoint occurred in 149 of 425 patients in the clopidogrel group vs 151 of 426 patients in the placebo (plus ASA) group (hazard ratio [HR], 0.98; 95% confidence interval [CI], 0.78-1.23). In a prespecified subgroup analysis, the primary endpoint was significantly reduced by clopidogrel in prosthetic graft patients (HR, 0.65; 95% CI, 0.45-0.95; P = .025) but not in venous graft patients (HR, 1.25; 95% CI, 0.94-1.67, not significant [NS]). A significant statistical interaction between treatment effect and graft type was observed (P(interaction) = .008). Although total bleeds were more frequent with clopidogrel, there was no significant difference between the rates of severe bleeding in the clopidogrel and placebo (plus ASA) groups (2.1% vs 1.2%). CONCLUSION: The combination of clopidogrel plus ASA did not improve limb or systemic outcomes in the overall population of PAD patients requiring below-knee bypass grafting. Subgroup analysis suggests that clopidogrel plus ASA confers benefit in patients receiving prosthetic grafts without significantly increasing major bleeding risk.
Resumo:
Patients with diabetes mellitus are known to be at increased risk for acute cardiovascular events. We used intravascular ultrasound virtual histology (IVUS-VH) to examine whether nonobstructive coronary artery lesions of diabetic patients have distinct plaque composition and morphology compared with nondiabetic patients.
Resumo:
Differentiation between external contamination and incorporation of drugs or their metabolites from inside the body via blood, sweat or sebum is a general issue in hair analysis and of high concern when interpreting analytical results. In hair analysis for cannabinoids the most common target is Delta9-tetrahydrocannabinol (THC), sometimes cannabidiol (CBD) and cannabinol (CBN) are determined additionally. After repeated external contamination by cannabis smoke these analytes are known to be found in hair even after performing multiple washing steps. A widely accepted strategy to unequivocally prove active cannabis consumption is the analysis of hair extracts for the oxidative metabolite 11-nor-9-carboxy-THC (THC-COOH). Although the acidic nature of this metabolite suggests a lower rate of incorporation into the hair matrix compared to THC, it is not fully understood up to now why hair concentrations of THC-COOH are generally found to be much lower (mostly <10 pg/mg) than the corresponding THC concentrations. Delta9-Tetrahydrocannabinolic acid A (THCA A) is the preliminary end product of the THC biosynthesis in the cannabis plant. Unlike THC it is non-psychoactive and can be regarded as a 'precursor' of THC being largely decarboxylated when heated or smoked. The presented work shows for the first time that THCA A is not only detectable in blood and urine of cannabis consumers but also in THC positive hair samples. A pilot experiment performed within this study showed that after oral intake of THCA A on a regular basis no relevant incorporation into hair occurred. It can be concluded that THCA A in hair almost exclusively derives from external contamination e.g. by side stream smoke. Elevated temperatures during the analytical procedure, particularly under alkaline conditions, can lead to decarboxylation of THCA A and accordingly increase THC concentrations in hair. Additionally, it has to be kept in mind that in hair samples tested positive for THCA A at least a part of the 'non-artefact' THC probably derives from external contamination as well, because in condensate of cannabis smoke both THC and THCA A are present in relevant amounts. External contamination by side stream smoke could therefore explain the great differences in THC and THC-COOH hair concentrations commonly found in cannabis users.
Resumo:
Catheter-related infection of CSF is a potentially life-threatening complication of external ventricular drainage (EVD). When using EVD catheters, contact between the ventricular system and skin surface occurs and CSF infection is possible. The aim of this analysis was to compare the efficacy of silver-bearing EVD catheters for reducing the incidence of infection with standard nonimpregnated EVD catheters in neurosurgical patients with acute hydrocephalus.
Resumo:
Evidence for the best treatment strategy in women with critical limb ischemia (CLI) is limited and controversial with studies contradicting each other. Therefore, we determined the benefit of immediate revascularization compared to medical therapy (MT) with optional delayed revascularization in men and women with CLI.
Resumo:
Excessive consumption of acidic drinks and foods contributes to tooth erosion. The aims of the present in vitro study were twofold: (1) to assess the erosive potential of different dietary substances and medications; (2) to determine the chemical properties with an impact on the erosive potential. We selected sixty agents: soft drinks, an energy drink, sports drinks, alcoholic drinks, juice, fruit, mineral water, yogurt, tea, coffee, salad dressing and medications. The erosive potential of the tested agents was quantified as the changes in surface hardness (ΔSH) of enamel specimens within the first 2 min (ΔSH2-0 = SH2 min - SHbaseline) and the second 2 min exposure (ΔSH4-2 = SH4 min - SH2 min). To characterise these agents, various chemical properties, e.g. pH, concentrations of Ca, Pi and F, titratable acidity to pH 7·0 and buffering capacity at the original pH value (β), as well as degree of saturation (pK - pI) with respect to hydroxyapatite (HAP) and fluorapatite (FAP), were determined. Erosive challenge caused a statistically significant reduction in SH for all agents except for coffee, some medications and alcoholic drinks, and non-flavoured mineral waters, teas and yogurts (P < 0·01). By multiple linear regression analysis, 52 % of the variation in ΔSH after 2 min and 61 % after 4 min immersion were explained by pH, β and concentrations of F and Ca (P < 0·05). pH was the variable with the highest impact in multiple regression and bivariate correlation analyses. Furthermore, a high bivariate correlation was also obtained between (pK - pI)HAP, (pK - pI)FAP and ΔSH.
Resumo:
Instrumental daily series of temperature are often affected by inhomogeneities. Several methods are available for their correction at monthly and annual scales, whereas few exist for daily data. Here, an improved version of the higher-order moments (HOM) method, the higher-order moments for autocorrelated data (HOMAD), is proposed. HOMAD addresses the main weaknesses of HOM, namely, data autocorrelation and the subjective choice of regression parameters. Simulated series are used for the comparison of both methodologies. The results highlight and reveal that HOMAD outperforms HOM for small samples. Additionally, three daily temperature time series from stations in the eastern Mediterranean are used to show the impact of homogenization procedures on trend estimation and the assessment of extremes. HOMAD provides an improved correction of daily temperature time series and further supports the use of corrected daily temperature time series prior to climate change assessment.
Efficacy of communication skills training courses in oncology: a systematic review and meta-analysis
Resumo:
Objective: Group training in communication skills [communication skills training (CST)] has become partly mandatory for oncology staff. However, so far, a comprehensive meta-analysis on the efficacy is lacking. Design: Included studies either compare the efficacy of a specific training with a control group or look at the additional effect of booster sessions on communication behaviour, attitudes or patient outcomes. Methods: Four electronic databases were searched up to July 2008 without language restriction, and reference lists of earlier reviews were screened. Effect sizes (ESs) were extracted and pooled in random effects meta-analyses. Results: We included 13 trials (three non-randomised), 10 with no specific intervention in the control group. Meta-analysis showed a moderate effect of CST on communication behaviour ES = 0.54. Three trials compared basic training courses with more extensive training courses and showed a small additional effect on communication skills ES = 0.37. Trials investigating participants' attitudes ES = 0.35 and patient outcomes ES = 0.13 (trend) confirmed this effect. Conclusions: Training health professionals by CST is a promising approach to change communication behaviour and attitudes. Patients might also benefit from specifically trained health professionals but strong studies are lacking. However, feasibility and economic aspects have to be kept in mind when considering providing a training of optimal length.