960 resultados para seawater desalination
Resumo:
Desalination of groundwater is essential in arid regions that are remote from both seawater and freshwater resources. Desirable features of a groundwater desalination system include a high recovery ratio, operation from a sustainable energy source such as solar, and high water output per unit of energy and land. Here we propose a new system that uses a solar-Rankine cycle to drive reverse osmosis (RO). The working fluid such as steam is expanded against a power piston that actuates a pump piston which in turn pressurises the saline water thus passing it through RO membranes. A reciprocating crank mechanism is used to equalise the forces between the two pistons. The choice of batch mode in preference to continuous flow permits maximum energy recovery and minimal concentration polarisation in the vicinity of the RO membrane. This study analyses the sizing and efficiency of the crank mechanism, quantifies energy losses in the RO separation and predicts the overall performance. For example, a system using a field of linear Fresnel collectors occupying 1000 m2 of land and raising steam at 200 °C and 15.5 bar could desalinate 350 m3/day from saline water containing 5000 ppm of sodium chloride with a recovery ratio of 0.7.
Resumo:
In many areas of northern India, salinity renders groundwater unsuitable for drinking and even for irrigation. Though membrane treatment can be used to remove the salt, there are some drawbacks to this approach e.g. (1) depletion of the groundwater due to over-abstraction, (2) saline contamination of surface water and soil caused by concentrate disposal and (3) high electricity usage. To address these issues, a system is proposed in which a photovoltaic-powered reverse osmosis (RO) system is used to irrigate a greenhouse (GH) in a stand-alone arrangement. The concentrate from the RO is supplied to an evaporative cooling system, thus reducing the volume of the concentrate so that finally it can be evaporated in a pond to solid for safe disposal. Based on typical meteorological data for Delhi, calculations based on mass and energy balance are presented to assess the sizing and cost of the system. It is shown that solar radiation, freshwater output and evapotranspiration demand are readily matched due to the approximately linear relation among these variables. The demand for concentrate varies independently, however, thus favouring the use of a variable recovery arrangement. Though enough water may be harvested from the GH roof to provide year-round irrigation, this would require considerable storage. Some practical options for storage tanks are discussed. An alternative use of rainwater is in misting to reduce peak temperatures in the summer. An example optimised design provides internal temperatures below 30EC (monthly average daily maxima) for 8 months of the year and costs about €36,000 for the whole system with GH floor area of 1000 m2 . Further work is needed to assess technical risks relating to scale-deposition in the membrane and evaporative pads, and to develop a business model that will allow such a project to succeed in the Indian rural context.
Resumo:
We have directly measured properties of concentrated seawater brines produced through solar evaporation in salt works. They are sufficiently hygroscopic for use in desiccant cooling cycles which can cool air to 8.0–10.9 °C below ambient. This compares to only 3.8–8.7 °C with simple evaporative cooling. Desiccant cooling can extend the growing seasons of greenhouse crops thus providing an adaptive measure against climate change.
Resumo:
This study proposes a new type of greenhouse for water re-use and energy saving for agriculture in arid and semi-arid inland regions affected by groundwater salinity. It combines desalination using reverse osmosis (RO), re-use of saline concentrate rejected by RO for cooling, and rainwater harvesting. Experimental work was carried at GBPUAT, Pantnagar, India. Saline concentrate was fed to evaporative cooling pads of greenhouse and found to evaporate at similar rates as conventional freshwater. Two enhancements to the system are described: i) A jet pump, designed and tested to use pressurized reject stream to re-circulate cooling water and thus maintain uniform wetness in cooling pads, was found capable of multiplying flow of cooling water by a factor of 2.5 to 4 while lifting water to a head of 1.55 m; and ii) Use of solar power to drive ventilation fans of greenhouse, for which an electronic circuit has been produced that uses maximum power-point tracking to maximize energy efficiency. Re-use of RO rejected concentrate for cooling saves water (6 l d-1 m-2) of greenhouse floor area and the improved fan could reduce electricity consumption by a factor 8.
Resumo:
The aim of this paper is to identify and evaluate potential areas of technical improvement to solar-powered desalination systems that use reverse osmosis (RO). We compare ideal with real specific energy consumption (SEC) to pinpoint the causes of inefficiency. The ideal SEC is compared among different configurations including a batch system driven by a piston, and continuous systems with single or multiple stages with or without energy recovery in each case. For example, to desalinate 1 m3 of freshwater from normal seawater (osmotic pressure 27 bar) will require at least 0.94 kWh of solar energy; thus in a sunny coastal location, up to 1850 m3 of water per year per m2 (m3/m2) of land covered by solar collectors could theoretically be desalinated. For brackish water (osmotic pressure 3 bar), 11570 m3/m2 of fresh water could theoretically be obtained under the same conditions. These ideal values are compared with practically achieved values reported in the literature. The practical energy consumption is found to be typically 40-200 times higher depending on feed water composition, system configuration and energy recovery. For state-of-the-art systems, energy losses at the various steps in the conversion process are quantified and presented with the help of Sankey diagrams. Improvements that could reduce the losses are discussed. Consequently, recommendations for areas of R&D are highlighted with particular reference to emerging technologies. It is concluded that there is considerable scope to improve the efficiency of solar-powered RO system.
Resumo:
A theoretical model for the transport phenomena in an air gap membrane distillation is presented. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The slip flow occurs due to the hydrophobic properties of the membrane. The slip boundary condition applied on the feed saline solution-membrane interface is taken into consideration showing its effects on process parameters particularly permeate flow, heat transfer coefficient and thermal efficiency. The theoretical model was validated with available experimental data and was found to be in good agreement especially when the slip condition is introduced. Increasing slip length from zero to 200 μm was found to increase the permeate flux and the thermal efficiency by 33% and 1.7% respectively.
Resumo:
Evaporative pads are frequently used for the cooling of greenhouses. However, a drawback of this method is the consumption of freshwater. In this paper it is shown, both theoretically and through a practical example, that effective evaporative cooling can be achieved using seawater in place of fresh water. The advantages and drawbacks of using seawater are discussed more generally. In climates that are both hot and humid, evaporative systems cannot always provide sufficient cooling, with the result that cultivation often has to be halted during the hottest months of the year. To overcome this, we propose a concept in which a desiccant pad is used to dehumidify the air before it enters the evaporative pad. The desiccant pad is supplied with a hygroscopic liquid that is regenerated by the energy of the sun. The performance of this concept has been modelled and the properties of various liquids have been compared. An attractive option is to obtain the liquid from seawater itself, given that seawater contains hygroscopic salts such as magnesium chloride. Preliminary experiments are reported in which magnesium chloride solution has been regenerated beneath a solar simulator.
Resumo:
For remote, semi-arid areas, brackish groundwater (BW) desalination powered by solar energy may serve as the most technically and economically viable means to alleviate the water stresses. For such systems, high recovery ratio is desired because of the technical and economical difficulties of concentrate management. It has been demonstrated that the current, conventional solar reverse osmosis (RO) desalination can be improved by 40–200 times by eliminating unnecessary energy losses. In this work, a batch-RO system that can be powered by a thermal Rankine cycle has been developed. By directly recycling high pressure concentrates and by using a linkage connection to provide increasing feed pressures, the batch-RO has been shown to achieve a 70% saving in energy consumption compared to a continuous single-stage RO system. Theoretical investigations on the mass transfer phenomena, including dispersion and concentration polarization, have been carried out to complement and to guide experimental efforts. The performance evaluation of the batch-RO system, named DesaLink, has been based on extensive experimental tests performed upon it. Operating DesaLink using compressed air as power supply under laboratory conditions, a freshwater production of approximately 300 litres per day was recorded with a concentration of around 350 ppm, whilst the feed water had a concentration range of 2500–4500 ppm; the corresponding linkage efficiency was around 40%. In the computational aspect, simulation models have been developed and validated for each of the subsystems of DesaLink, upon which an integrated model has been realised for the whole system. The models, both the subsystem ones and the integrated one, have been demonstrated to predict accurately the system performance under specific operational conditions. A simulation case study has been performed using the developed model. Simulation results indicate that the system can be expected to achieve a water production of 200 m3 per year by using a widely available evacuated tube solar collector having an area of only 2 m2. This freshwater production would satisfy the drinking water needs of 163 habitants in the Rajasthan region, the area for which the case study was performed.
Resumo:
Desalination plants could become net absorbers (rather than net emitters) of CO2. Thermal decomposition of salts in desalination reject brine can yield MgO which, added to the ocean, would take up CO2 through conversion to bicarbonate. The process proposed here comprises dewatering of brine followed by decomposition in a solar receiver using a heliostat field.
Resumo:
Batch-mode reverse osmosis (batch-RO) operation is considered a promising desalination method due to its low energy requirement compared to other RO system arrangements. To improve and predict batch-RO performance, studies on concentration polarization (CP) are carried out. The Kimura-Sourirajan mass-transfer model is applied and validated by experimentation with two different spiral-wound RO elements. Explicit analytical Sherwood correlations are derived based on experimental results. For batch-RO operation, a new genetic algorithm method is developed to estimate the Sherwood correlation parameters, taking into account the effects of variation in operating parameters. Analytical procedures are presented, then the mass transfer coefficient models are developed for different operation processes, i.e., batch-RO and continuous RO. The CP related energy loss in batch-RO operation is quantified based on the resulting relationship between feed flow rates and mass transfer coefficients. It is found that CP increases energy consumption in batch-RO by about 25% compared to the ideal case in which CP is absent. For continuous RO process, the derived Sherwood correlation predicted CP accurately. In addition, we determined the optimum feed flow rate of our batch-RO system.
Resumo:
This theoretical study shows the technical feasibility of self-powered geothermal desalination of groundwater sources at <100 °C. A general method and framework are developed and then applied to specific case studies. First, the analysis considers an ideal limit to performance based on exergy analysis using generalised idealised assumptions. This thermodynamic limit applies to any type of process technology. Then, the analysis focuses specifically on the Organic Rankine Cycle (ORC) driving Reverse Osmosis (RO), as these are among the most mature and efficient applicable technologies. Important dimensionless parameters are calculated for the ideal case of the self-powered arrangement and semi-ideal case where only essential losses dependent on the RO system configuration are considered. These parameters are used to compare the performance of desalination systems using ORC-RO under ideal, semi-ideal and real assumptions for four case studies relating to geothermal sources located in India, Saudi Arabia, Tunisia and Turkey. The overall system recovery ratio (the key performance measure for the self-powered process) depends strongly on the geothermal source temperature. It can be as high as 91.5% for a hot spring emerging at 96 °C with a salinity of 1830 mg/kg.
Resumo:
Groundwater salinity is a widespread problem that contributes to the freshwater deficit of humanity. Consequently, where conventional energy supply is also lacking, organic Rankine cycle (ORC) engines are being considered as a feasible option to harness readily available low-grade heat (<180°C) to drive the desalination of the saline water via reverse osmosis (RO). However, this application is still not very well developed, and has significantly high specific energy consumption (SEC). Hence, this study explores the isothermal expansion of the ORC working fluid to achieve improved efficiency for driving a batch-RO desalination process, "DesaLink". Here, the working fluid is directly vaporized in the expansion cylinder which is heated externally by heat transfer fluid, thus obviating the need for a separate external boiler and high-pressure piping. Experimental investigations with R245fa have shown cycle efficiency of 8.8%. And it is predicted that the engine could drive DesaLink to produce 256 L of freshwater per 8 h per day, from 4000 ppm saline water, with a thermal and mechanical SEC of 2.5 and 0.36 kWh/m3, respectively, representing a significant improvement on previously reported or predicted SEC values. © 2014 © 2014 Balaban Desalination Publications. All rights reserved.
Resumo:
The objective of this project is to design a new desalination system with energy efficiency approaching the theoretical thermodynamic limit—even at high recovery ratio. The system uses reverse osmosis (RO) and a batch principle of operation to overcome the problem of concentration factor which prevents continuous-flow RO systems from ever reaching this limit and thus achieving the minimum possible specific energy consumption, SEC. Batch operation comprises a cycle in three phases: pressurisation, purge, and refill. Energy recovery is inherent to the design. Unlike in closed-circuit desalination (CCD), no feedwater is added to the pressure circuit during the pressurisation phase. The batch configuration is compared to standard configurations such as continuous single-stage RO (with energy recovery) and CCD. Theoretical analysis has shown that the new system is able to use 33% less energy than CCD at a recovery ratio of 80%. A prototype has been constructed using readily available parts and tested with feedwater salinities and recovery ratios ranging from 2,000 to 5,000 ppm and 17.2–70.6%, respectively. Results compare very well against the standard configurations. For example, with feedwater containing 5,000 ppm NaCl and recovery ratio of 69%, a hydraulic SEC of 0.31 kWh/m3 was obtained—better than the minimum theoretically possible with a single-stage continuous flow system with energy recovery device.
Resumo:
In brackish groundwater desalination, high recovery ratio (of fresh water from saline feed) is desired to minimise concentrate reject. To this effect, previous studies have developed a batch reverse osmosis (RO) desalination system, DesaLink, which proposed to expand steam in a reciprocating piston cylinder and transmit the driving force through a linkage crank mechanism to pressurise batches of saline water (recirculating) in a water piston cylinder unto RO membranes. However, steam is largely disadvantaged at operation from low temperature (< 150oC) thermal sources; and organic working fluids are more viable, though, the obtainable thermal cycle efficiencies are generally low with low temperatures. Consequently, this thesis proposed to investigate the use of organic working fluid Rankine cycle (ORC) with isothermal expansion, to drive the DesaLink machine, at improved thermal efficiency from low temperature thermal sources. Following a review of the methods of achieving isothermal expansion, ‘liquid flooded expansion’ and ‘expansion chamber surface heating’ were identified as potential alternative methods. Preliminary experimental comparative analysis of variants of the heated expansion chamber technique of effecting isothermal expansion favoured a heated plain wall technique, and as such was adopted for further optimisation and development. Further, an optimised isothermal ORC engine was built and tested at < 95oC heat source temperature, with R245fa working fluid – which was selected from 16 working fluids that were analysed for isothermal operation. Upon satisfactory performance of the test engine, a larger (10 times) version was built and coupled to drive the DesaLink system. Operating the integrated ORC-RO DesaLink system, gave freshwater (approximately 500 ppm) production of about 12 litres per hour (from 4000 ppm feed water) at a recovery ratio of about 0.7 and specific energy consumption of 0.34 kWh/m3; and at a thermal efficiency of 7.7%. Theoretical models characterising the operation and performance of the integrated system was developed and utilised to access the potential field performance of the system, when powered by two different thermal energy sources – solar and industrial bakery waste heat – as case studies.
Resumo:
This study investigates the potential release of from carbonate aquifers exposed to seawater intrusion. Adsorption and desorption of in the presence of deionized water (DIW) and seawater were conducted on a large block of Pleistocene age limestone to simulate the effects of seawater intrusion into a coastal carbonate aquifer at the laboratory scale. The limestone showed strong adsorption of in DIW, while adsorption was significantly less in the presence of seawater. Dissolution of CaCO3 was found to prevent adsorption at salinities less than 30 psu. Adsorption of was limited at higher salinities (30–33 psu), due to competition with ions for adsorption sites. At a salinity3 precipitated. Concentrations of between 2 and 5 μmol/L were released by desorption when the limestone was exposed to seawater. The results of this study suggest that as seawater intrudes into an originally freshwater coastal aquifer, adsorbed may be released into the groundwater. Consequently, adsorbed is expected to be released from coastal carbonate aquifers world-wide as sea level continues to rise exposing more of the freshwater aquifer to seawater.