974 resultados para sampling rate
Resumo:
Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin's exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate-aromatic interactions including CH-pi and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to beta-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.
Resumo:
Remote sensing of physiological parameters could be a cost effective approach to improving health care, and low-power sensors are essential for remote sensing because these sensors are often energy constrained. This paper presents a power optimized photoplethysmographic sensor interface to sense arterial oxygen saturation, a technique to dynamically trade off SNR for power during sensor operation, and a simple algorithm to choose when to acquire samples in photoplethysmography. A prototype of the proposed pulse oximeter built using commercial-off-the-shelf (COTS) components is tested on 10 adults. The dynamic adaptation techniques described reduce power consumption considerably compared to our reference implementation, and our approach is competitive to state-of-the-art implementations. The techniques presented in this paper may be applied to low-power sensor interface designs where acquiring samples is expensive in terms of power as epitomized by pulse oximetry.
Resumo:
This paper derives outer bounds for the 2-user symmetric linear deterministic interference channel (SLDIC) with limited-rate transmitter cooperation and perfect secrecy constraints at the receivers. Five outer bounds are derived, under different assumptions of providing side information to receivers and partitioning the encoded message/output depending on the relative strength of the signal and the interference. The usefulness of these outer bounds is shown by comparing the bounds with the inner bound on the achievable secrecy rate derived by the authors in a previous work. Also, the outer bounds help to establish that sharing random bits through the cooperative link can achieve the optimal rate in the very high interference regime.
Resumo:
We consider a server serving a time-slotted queued system of multiple packet-based flows, where not more than one flow can be serviced in a single time slot. The flows have exogenous packet arrivals and time-varying service rates. At each time, the server can observe instantaneous service rates for only a subset of flows ( selected from a fixed collection of observable subsets) before scheduling a flow in the subset for service. We are interested in queue length aware scheduling to keep the queues short. The limited availability of instantaneous service rate information requires the scheduler to make a careful choice of which subset of service rates to sample. We develop scheduling algorithms that use only partial service rate information from subsets of channels, and that minimize the likelihood of queue overflow in the system. Specifically, we present a new joint subset-sampling and scheduling algorithm called Max-Exp that uses only the current queue lengths to pick a subset of flows, and subsequently schedules a flow using the Exponential rule. When the collection of observable subsets is disjoint, we show that Max-Exp achieves the best exponential decay rate, among all scheduling algorithms that base their decision on the current ( or any finite past history of) system state, of the tail of the longest queue. To accomplish this, we employ novel analytical techniques for studying the performance of scheduling algorithms using partial state, which may be of independent interest. These include new sample-path large deviations results for processes obtained by non-random, predictable sampling of sequences of independent and identically distributed random variables. A consequence of these results is that scheduling with partial state information yields a rate function significantly different from scheduling with full channel information. In the special case when the observable subsets are singleton flows, i.e., when there is effectively no a priori channel state information, Max-Exp reduces to simply serving the flow with the longest queue; thus, our results show that to always serve the longest queue in the absence of any channel state information is large deviations optimal.
Resumo:
Using different proxies of solar activity, we have studied the following features of the solar cycle: i) The linear correlation between the amplitude of cycle and its decay rate, ii) the linear correlation between the amplitude of cycle and the decay rate of cycle , and iii) the anti-correlation between the amplitude of cycle and the period of cycle . Features ii) and iii) are very useful because they provide precursors for future cycles. We have reproduced these features using a flux-transport dynamo model with stochastic fluctuations in the Babcock-Leighton effect and in the meridional circulation. Only when we introduce fluctuations in meridional circulation, are we able to reproduce different observed features of the solar cycle. We discuss the possible reasons for these correlations.
Resumo:
This paper derives outer bounds on the sum rate of the K-user MIMO Gaussian interference channel (GIC). Three outer bounds are derived, under different assumptions of cooperation and providing side information to receivers. The novelty in the derivation lies in the careful selection of side information, which results in the cancellation of the negative differential entropy terms containing signal components, leading to a tractable outer bound. The overall outer bound is obtained by taking the minimum of the three outer bounds. The derived bounds are simplified for the MIMO Gaussian symmetric IC to obtain outer bounds on the generalized degrees of freedom (GDOF). The relative performance of the bounds yields insight into the performance limits of multiuser MIMO GICs and the relative merits of different schemes for interference management. These insights are confirmed by establishing the optimality of the bounds in specific cases using an inner bound on the GDOF derived by the authors in a previous work. It is also shown that many of the existing results on the GDOF of the GIC can be obtained as special cases of the bounds, e. g., by setting K = 2 or the number of antennas at each user to 1.
Resumo:
We investigate the evolution of hydromagnetic perturbations in a small section of accretion disks. It is known that molecular viscosity is negligible in accretion disks. Hence, it has been argued that a mechanism, known as magnetorotational instability (MRI), is responsible for transporting matter in the presence of a weak magnetic field. However, there are some shortcomings, which question the effectiveness of MRI. Now the question arises, whether other hydromagnetic effects, e.g., transient growth (TG), can play an important role in bringing nonlinearity into the system, even at weak magnetic fields. In addition, it should be determined whether MRI or TG is primarily responsible for revealing nonlinearity in order to make the flow turbulent. Our results prove explicitly that the flows with a high Reynolds number (Re), which is the case for realistic astrophysical accretion disks, exhibit nonlinearity via TG of perturbation modes faster than that by modes producing MRI. For a fixed wave vector, MRI dominates over transient effects only at low Re, lower than the value expected to be in astrophysical accretion disks, and low magnetic fields. This calls into serious question the (overall) persuasiveness of MRI in astrophysical accretion disks.
Resumo:
Flexray is a high speed communication protocol designed for distributive control in automotive control applications. Control performance not only depends on the control algorithm but also on the scheduling constraints in communication. A balance between the control performance and communication constraints must required for the choice of the sampling rates of the control loops in a node. In this paper, an optimum sampling period of control loops to minimize the cost function, satisfying the scheduling constraints is obtained. An algorithm to obtain the delay in service of each task in a node of the control loop in the hyper period has been also developed. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
Classical models are not successful in describing discharge characteristics of a lead-acid battery when the current density is varied over a wide range. A model is developed in this work to overcome this lacuna by introducing into the standard models two mechanisms that have not been used earlier. Lead sulfate particles nucleate and grow on active materials of electrodes during discharge, resulting in coverage of active area. Increasing rate of discharge builds supersaturation of lead sulfate rapidly, and causes increased extents of nucleation and coverage. Electrodes behave almost like an insulator due to deposition of lead sulfate when active materials are converted to a critical extent, and this can stop discharge process. Influence of this mechanism is also rate dependent. The new model developed is tested against data on polarization behavior, and capacity drawn as a function of current. The model successfully predicts both polarization curves and Peukert behavior. The model is used to predict charge that can be drawn at a current after partial discharge at a different current. Model suggests that altering nucleation behavior can be useful in enhancing capacity available for discharge. (C) 2015 The Electrochemical Society.
Resumo:
Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation deprotonation reaction of the 20 canonical alpha amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metad-ynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pK(a) values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pK(a) values with a mean relative error, with respect to experimental results, of 0.2 pK(a) units.
Resumo:
We establish zero-crossing rate (ZCR) relations between the input and the subbands of a maximally decimated M-channel power complementary analysis filterbank when the input is a stationary Gaussian process. The ZCR at lag is defined as the number of sign changes between the samples of a sequence and its 1-sample shifted version, normalized by the sequence length. We derive the relationship between the ZCR of the Gaussian process at lags that are integer multiples of Al and the subband ZCRs. Based on this result, we propose a robust iterative autocorrelation estimator for a signal consisting of a sum of sinusoids of fixed amplitudes and uniformly distributed random phases. Simulation results show that the performance of the proposed estimator is better than the sample autocorrelation over the SNR range of -6 to 15 dB. Validation on a segment of a trumpet signal showed similar performance gains.
Resumo:
A new automatic algorithm for the assessment of mixed mode crack growth rate characteristics is presented based on the concept of an equivalent crack. The residual ligament size approach is introduced to implementation this algorithm for identifying the crack tip position on a curved path with respect to the drop potential signal. The automatic algorithm accounting for the curvilinear crack trajectory and employing an electrical potential difference was calibrated with respect to the optical measurements for the growing crack under cyclic mixed mode loading conditions. The effectiveness of the proposed algorithm is confirmed by fatigue tests performed on ST3 steel compact tension-shear specimens in the full range of mode mixities from pure mode Ito pure mode II. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We propose a multiple initialization based spectral peak tracking (MISPT) technique for heart rate monitoring from photoplethysmography (PPG) signal. MISPT is applied on the PPG signal after removing the motion artifact using an adaptive noise cancellation filter. MISPT yields several estimates of the heart rate trajectory from the spectrogram of the denoised PPG signal which are finally combined using a novel measure called trajectory strength. Multiple initializations help in correcting erroneous heart rate trajectories unlike the typical SPT which uses only single initialization. Experiments on the PPG data from 12 subjects recorded during intensive physical exercise show that the MISPT based heart rate monitoring indeed yields a better heart rate estimate compared to the SPT with single initialization. On the 12 datasets MISPT results in an average absolute error of 1.11 BPM which is lower than 1.28 BPM obtained by the state-of-the-art online heart rate monitoring algorithm.