946 resultados para rotating grazing
Resumo:
Aggregates of fetal rat brain were maintained in rotating culture for 30-40 days and were analyzed morphologically and biochemically. At 4 days in culture all cells were undifferentiated. At 26 days in vitro over 90% of all cells within the aggregates could be identified as neurons, astrocytes or oligodendrocytes. Myelinated axons and morphologically mature synapses were present at 26 days. Myelination started between 18 and 19 days in culture as determined biochemically. Myelin basic protein sulphatide synthesis and 2′,3′-cyclic nucleotide 3′-phosphohydrolase activity increased with in vitro age. The amount of myelin observed within the aggregates was much lower than observed at the corresponding age in vivo. Neurons and neuronal processes were undergoing severe degeneration in the 40-day aggregates and synaptic contacts were not maintained. There were no normal myelinated axons at 40 days although multilammellar membranes were found intra- and extracellularly. The ganglioside pattern of the aggregates were qualitatively similar to rat whole brain. Quantitatively the GM3ganglioside was elevated in comparison to whole rat brain. Our results indicate that aggregating rat brain cultures provide a useful in vitro system for the biochemical and morphological analysis of myelin formation.
Resumo:
Rotating scroll waves are dynamical spatiotemporal structures characteristic of three-dimensional active media. It is well known that, under low excitability conditions, scroll waves develop an intrinsically unstable dynamical regime that leads to a highly disorganized pattern of wave propagation. Such a ¿turbulent¿ state bears some resemblance to fibrillation states in cardiac tissue. We show here that this unstable regime can be controlled by using a spatially distributed random forcing superimposed on a control parameter of the system. Our results are obtained from numerical simulations but an explicit analytical argument that rationalizes our observations is also presented.
Resumo:
We develop a real option model of the irreversible native grassland conversion decision. Upon plowing, native grassland can be followed by either a permanent cropping system or a system in which land is put under cropping (respectively, grazing) whenever crop prices are high (respectively, low). Switching costs are incurred upon alternating between cropping and grazing. The effects of risk intervention in the form of crop insurance subsidies are studied, as are the effects of cropping innovations that reduce switching costs. We calibrate the model by using cropping return data for South Central North Dakota from 1989 to 2012. Simulations show that a risk intervention that offsets 20% of a cropping return shortfall increases the sod-busting cost threshold, below which native sod will be busted, by 41% (or $43.7/acre). Omitting cropping return risk across time underestimates this sod-busting cost threshold by 23% (or $24.35/acre), and hence underestimates the native sod conversion caused by crop production.
Resumo:
The centrifugal liquid membrane (CLM) cell has been utilized for chiroptical studies of liquid-liquid interfaces with a conventional circular dichroism (CD) spectropolarimeter. These studies required the characterization of optical properties of the rotating cylindrical CLM glass cell, which was used under the high speed rotation. In the present study, we have measured the circular and linear dichroism (CD and LD) spectra and the circular and linear birefringence (CB and LB) spectra of the CLM cell itself as well as those of porphyrine aggregates formed at the liquid-liquid interface in the CLM cell, applying Mueller matrix measurement method. From the results, it was confirmed that the CLM-CD spectra of the interfacial porphyrin aggregates observed by a conventional CD spectropolarimeter should be correct irrespective of LD and LB signals in the CLM cell.
Resumo:
Summary: Grazing on pastures treated with glyphosate : influence on bovine reproduction
Resumo:
Macroalgae is the dominant trophic group on Mediterranean infralittoral rocky bottoms, whereas zooxanthellate corals are extremely rare. However, in recent years, the invasive coral Oculina patagonica appears to be increasing its abundance through unknown means. Here we examine the pattern of variation of this species at a marine reserve between 2002 and 2010 and contribute to the understanding of the mechanisms that allow its current increase. Because indirect interactions between species can play a relevant role in the establishment of species, a parallel assessment of the sea urchin Paracentrotus lividus, the main herbivorous invertebrate in this habitat and thus a key species, was conducted. O. patagonica has shown a 3-fold increase in abundance over the last 8 years and has become the most abundant invertebrate in the shallow waters of the marine reserve, matching some dominant erect macroalgae in abundance. High recruitment played an important role in this increasing coral abundance. The results from this study provide compelling evidence that the increase in sea urchin abundance may be one of the main drivers of the observed increase in coral abundance. Sea urchins overgraze macroalgae and create barren patches in the space-limited macroalgal community that subsequently facilitate coral recruitment. This study indicates that trophic interactions contributed to the success of an invasive coral in the Mediterranean because sea urchins grazing activity indirectly facilitated expansion of the coral. Current coral abundance at the marine reserve has ended the monopolization of algae in rocky infralittoral assemblages, an event that could greatly modify both the underwater seascape and the sources of primary production in the ecosystem.
Resumo:
Gammarus aequicauda and Sphaeroma hookeri are the most abundant macroinvertebrates on Ruppia cirrhosa (1275 and 1290 individuals.m-2) and Potamogeton pectinatus (140 and 680 individuals. m-2) in Tancada lagoon, a Mediterranean coastal lagoon in the Ebro Delta (NE Spain). Consumption and assimilation efficiencies were calculated from bell jar experiments. Gammarus grazing effects are higher than Sphaeroma on both Ruppia cirrhosa and Potamogeton pectinatus. Green Ruppia leaves lost 0.3 mg per mg Gammarus per day, while Potamogeton leaves lost 0.2 mg per mg Gammarus per day. Decomposing Ruppia leaves lost 0.35-0.54 mg per mg Gammarus per day. Losses of weight by both Ruppia and Potamogeton due to Sphaeroma feeding were less than half those by Gammarus. Assimilation efficiencies are higher for Gammarus (44-78% feeding on Ruppia 2% feeding on Potamogeton) than for Sphaeroma (26-48%) feeding on Ruppia). These assimilation efficiencies were higher than those reported by other authors working at higher latitudes perhaps because of the higher temperature under which the experiments were carried out.
Resumo:
The decomposition process of Ruppia cirrhosa was studied in a Mediterranean coastal lagoon in the Delta of the River Ebro (NE Spain). Leaves and shoots of Ruppia were enclosed in 1 mm-mesh and 100 pm-mesh litter bags to ascertain the effect of detritivores, macroinvertebrates, and bacteria and fungi, respectively. Changes in biomass and carbon, and, nitrogen and phosphorus concentrations in the detritus were studied at the sediment-water interface and in the sediment. Significant differences in biomass decay were observed between the two bag types. Significant differences in decomposition were observed between the two experimental conditions studied using 100 pm-mesh bags. These differences were not significant when using the 1 mm-mesh bags. The carbon content in the detritus remained constant during the decomposition process. The percentage of nitrogen increased progressively from an initial 2.4 % to 3 %. The percentage of phosphorus decreased rapidly during the first two days of decomposition from an initial 0.26 % to 0.17 %. This loss is greater in the sediment than in the water column or at the sediment-water interface. From these results we deduce that the activity of microorganisms seems to be more important in the sediment than in the water-sediment interface, and that grazing by macroinvertebrates has less importance in the sediment than in the water column.
Resumo:
A new paint testing device was built to determine the resistance of paints to darkening due to road grime being tracked onto them. The device consists of a tire rotating on a sample drum. Soil was applied to the tire and then tracked onto paint samples which were attached to the drum. A colorimeter was used to measure the lightness of the paints after being tracked. Lightness is measured from 0 (absolute black) to 100 (absolute white). Four experiments were run to determine the optimum time length to track a sample, the reproducibility, the effects of different soils, and the maximum acceptable level for darkening of a paint. The following conclusions were reached: 1) the optimum tracking time was 10 minutes; 2) the reproducibility had a standard deviation of 1.5 lightness units; 3) different soils did not have a large effect on the amount of darkening on the paints; 4) a maximum acceptable darkness could not be established based on the limited amount of data; and 5) a correlation exists between the paints which were darkening in the field and the paints which were turning the darkest on the tracking wheel.
Resumo:
Many accidents involving Iowa snowplows have happened in recent years. This study investigated the influence of time of day, sex of subject, type of snowplow sign and snowplow speed on the criteria of oncoming driver reaction time and his estimate of snowplow speed. Film strips were made of a car passing a snow-Plow under various experimental conditions. These experimental movie strips were viewed in the laboratory by college student drivers who were asked to indicate their reaction time to slow down and to estimate the speed of the snowplow being passed. The generally best sign condition for the snowplow was to have a striped rear sign and a speed-proportional flashing light in addition to the standard rotating beacon on top of the truck. Several recommendations were made.
Resumo:
Five years after the 2005 Pakistan earthquake that triggered multiple mass movements, landslides continue to pose a threat to the population of Azad Kashmir, especially during heavy monsoon rains. The thousands of landslides that were triggered by the 7.6 magnitude earthquake in 2005 were not just due to a natural phenomenon but largely induced by human activities, namely, road building, grazing, and deforestation. The damage caused by the landslides in the study area (381 km2) is estimated at 3.6 times the annual public works budget of Azad Kashmir for 2005 of US$ 1 million. In addition to human suffering, this cost constitutes a significant economic setback to the region that could have been reduced through improved land use and risk management. This article describes interdisciplinary research conducted 18 months after the earthquake to provide a more systemic approach to understanding risks posed by landslides, including the physical, environmental, and human contexts. The goal of this research is twofold: to present empirical data on the social, geological, and environmental contexts in which widespread landslides occurred following the 2005 earthquake; and, second, to describe straightforward methods that can be used for integrated landslide risk assessments in data-poor environments. The article analyzes limitations of the methodologies and challenges for conducting interdisciplinary research that integrates both social and physical data. This research concludes that reducing landslide risk is ultimately a management issue, based in land use decisions and governance.
Resumo:
This research extends a previously developed work concerning about the use of local model predictive control in mobile robots. Hence, experimental results are presented as a way to improve the methodology by considering aspects as trajectory accuracy and time performance. In this sense, the cost function and the prediction horizon are important aspects to be considered. The platformused is a differential driven robot with a free rotating wheel. The aim of the present work is to test the control method by measuring trajectory tracking accuracy and time performance. Moreover, strategies for the integration with perception system and path planning are also introduced. In this sense, monocular image data provide an occupancy grid where safety trajectories are computed by using goal attraction potential fields
Resumo:
The objective of this work was to evaluate the effect of grazing interval and period of evaluation over tissue turnover in Tanzania grass pastures (Panicum maximum cv. Tanzania) and to ascertain if herbage accumulation rate can be used as a criterion to establish a defoliation schedule for this grass in Southeast of Brazil. A randomized block design with a split-plot arrangement was used. The effect of three grazing intervals was evaluated within seven periods between October 1995 and September 1996. Responses monitored were leaf and stem elongation rates, leaf senescence rate, stem length, and tiller density. Net herbage accumulation rate was calculated using tissue turnover data. The grazing intervals for Tanzania grass should be around 38 days between October and April (spring and early autumn) and 28 days during the reproductive phase of the grass (April/May). Between May and September (late autumn and winter), grazing interval should be around 48 days. Herbage accumulation rate is not a good criterion to establish defoliation time for Tanzania grass. Studies on the effects of stem production in grazing efficiency, animal intake and forage quality are needed to improve Tanzania grass management.
Resumo:
This project brings together rural and urban partners to address the impairment of Miners Creek, a cold water trout stream in Northeast Iowa. It eliminates point source pollution contributions from the City of Guttenberg, decreases non-point source pollution and increases in-stream and near stream habitat in the Miners Creek Watershed. It specifically eliminates sewage and storm water runoff from the City of Guttenberg into Miners Creek; it develops, enhances and preserves wetlands; reduces direct livestock access to the. stream through rotational grazing systems; completes stream bank stabilizatio11 and in-stream habitat creation; targets upland land treatment; and promotes targeted application of continuous CRP and forestry practices. This project recognizes that non-point source pollution improvements could be hampered by point source pollutants ihat inhibit biologic reproduction and survival. It takes appropliate measures to improve all aspects of the stream ecosystem.
Resumo:
The objective of this study was to evaluate the occurrence of the tiller size/density compensation mechanism in Tifton 85 bermudagrass swards grazed by sheep under continuous stocking. Treatments corresponded to four sward steady state conditions (5, 10, 15, and 20 cm of sward surface height), maintained by sheep grazing. The experimental design was a complete randomized block with four replicates. Pasture responses evaluated include: tiller population density, tiller mass, leaf mass and leaf area per tiller, and herbage mass. Tiller volume, leaf area index, tiller leaf/stem ratio, and tiller leaf area/volume ratio were calculated and simple regression analyses between tiller population density and tiller mass were performed. Measurements were made in December, 1998, and January, April, and July, 1999. The swards showed a tiller size/density compensation mechanism in which high tiller population densities were associated with small tillers and vice-versa, except in July, 1999. Regression analyses revealed that linear coefficients were steeper than the theoretical expectation of -3/2. Increments in herbage mass were attributable to increases in tiller mass in December and January. Leaf area/volume ratio values of Tifton 85 tillers were much lower than those commonly found for temperate grass species.