904 resultados para road safety research
Resumo:
Previous studies in the United States and internationally suggest that low motorcycle conspicuity, or the inability of the motorcyclist to be seen by other road users, is thought to be an important factor associated with risk of motorcycle crashes. However, there has been limited research on motorcycle conspicuity in the United States in the past two decades, while at the same time; there has been a renewed interest from states in increasing motorcycle conspicuity and motorist awareness. As such, this research revisits the motorcycle conspicuity problem by analysis of helmet-use and motorcycle crash data. First, this study reviews previous studies on motorcycle conspicuity with a focus on the effectiveness of proposed measures for enhancing motorcycle conspicuity. The major trends in motorcycle helmet use by time of day and road type for motorcyclists, as indicated from three roadside observational roadside surveys in Iowa, are also discussed. Then, using motorcycle crash data for Iowa from 2001 to 2008, this research compares single-and two-vehicle motorcycle crashes and examines the distribution of conspicuity related factors in light and dark conditions in two-vehicle crashes that could potentially relate to a collision between a motorcycle and another vehicle. The limitations of examining motorcycle conspicuity by analysis of crash data are also discussed. Finally, this report outlines recommendations based on the key findings of the study.
Resumo:
The Federal Highway Administration published the final rule updating 23 CFR 630 Subpart J in September 2004. The revised rule requires agencies using federal funding to address both safety and mobility in planning and construction of roadway improvements. The Iowa Department of Transportation (Iowa DOT) requested the assistance of the Center for Transportation and Research in developing guidance for a policy and procedures to comply with the final rule. This report describes an in-depth examination of current Iowa DOT project development processes for all types of improvements, including maintenance, as well as a detailed characterization of work zone impact considerations throughout project completion. To comply with both the letter and perceived intent of the final rule on safety and mobility, the report features a suggested work zone policy statement and suggested revisions in the Iowa DOT project development processes, including a definition of the key element: significant projects.
Resumo:
This project analyzes the characteristics and spatial distributions of motor vehicle crash types in order to evaluate the degree and scale of their spatial clustering. Crashes occur as the result of a variety of vehicle, roadway, and human factors and thus vary in their clustering behavior. Clustering can occur at a variety of scales, from the intersection level, to the corridor level, to the area level. Conversely, other crash types are less linked to geographic factors and are more spatially “random.” The degree and scale of clustering have implications for the use of strategies to promote transportation safety. In this project, Iowa's crash database, geographic information systems, and recent advances in spatial statistics methodologies and software tools were used to analyze the degree and spatial scale of clustering for several crash types within the counties of the Iowa Northland Regional Council of Governments. A statistical measure called the K function was used to analyze the clustering behavior of crashes. Several methodological issues, related to the application of this spatial statistical technique in the context of motor vehicle crashes on a road network, were identified and addressed. These methods facilitated the identification of crash clusters at appropriate scales of analysis for each crash type. This clustering information is useful for improving transportation safety through focused countermeasures directly linked to crash causes and the spatial extent of identified problem locations, as well as through the identification of less location-based crash types better suited to non-spatial countermeasures. The results of the K function analysis point to the usefulness of the procedure in identifying the degree and scale at which crashes cluster, or do not cluster, relative to each other. Moreover, for many individual crash types, different patterns and processes and potentially different countermeasures appeared at different scales of analysis. This finding highlights the importance of scale considerations in problem identification and countermeasure formulation.
Resumo:
Iowa features an extensive surface transportation system, with more than 110,000 miles of roadway, most of which is under the jurisdiction of local agencies. Given that Iowa is a lower-population state, most of this mileage is located in rural areas that exhibit low traffic volumes of less than 400 vehicles per day. However, these low-volume rural roads also account for about half of all recorded traffic crashes in Iowa, including a high percentage of fatal and major injury crashes. This study was undertaken to examine these crashes, identify major contributing causes, and develop low-cost strategies for reducing the incidence of these crashes. Iowa’s extensive crash and roadway system databases were utilized to obtain needed data. Using descriptive statistics, a test of proportions, and crash modeling, various classes of rural secondary roads were compared to similar state of Iowa controlled roads in crash frequency, severity, density, and rate for numerous selected factors that could contribute to crashes. The results of this study allowed the drawing of conclusions as to common contributing factors for crashes on low-volume rural roads, both paved and unpaved. Due to identified higher crash statistics, particular interest was drawn to unpaved rural roads with traffic volumes greater than 100 vehicles per day. Recommendations for addressing these crashes with low-cost mitigation are also included. Because of the isolated nature of traffic crashes on low-volume roads, a systemic or mass action approach to safety mitigation was recommended for an identified subset of the entire system. In addition, future development of a reliable crash prediction model is described.
Resumo:
The Iowa Department of Transportation (DOT) continuously assesses the likely causes of crashes at high-crash locations throughout the Iowa roadway network and designs solutions to reduce the incidences of crashes. This research analyzed approximately 100 safety projects constructed in the past 10 years to see what affect they had on highway safety. The projects are grouped into seven categories as defined by their scope of work: (1) install new traffic signal, (2) add turn lane(s), (3) install new signal and turn lane(s), (4) add left-turn phasing, (5) add left-turn phasing and turn lane(s), (6) replace pedestal mount signals with mast arm signals, and (7) other geometric improvements. The project makes use of an extensive statewide crash database. The results of the project will evaluate the assumed reduction factors and benefit/cost (B/C) analysis, determine the actual cost effectiveness of the Iowa DOT's safety programs, and allow the Iowa DOT to better prioritize future improvements.
Resumo:
This report, entitled Iowa Highway Research and Development Activities FY 2015, is submitted in compliance with Iowa Code section 310.36 and 312.3A, which direct the submission of a report of the Secondary Road Research Fund and the Street Research Fund, respectively. It is a report of the status of research and development projects in process on June 30, 2015. It is also a report on projects completed during the fiscal year beginning July 1, 2014 and ending June 30, 2015. Detailed information on each of the research and development projects mentioned in this report is available from the office of Research and Analytics, Performance and Technology Division, Iowa Department of Transportation. All approved reports are also online for viewing at http://www.iowadot.gov/research/pdf/IHRBAnnualReport.pdf.
Resumo:
Caspofungin at standard dose was evaluated as first-line monotherapy of mycologically documented probable/proven invasive aspergillosis (IA) (unmodified European Organisation for Research and Treatment of Cancer/Mycosis Study Group criteria) in allogeneic hematopoietic SCT patients. The primary efficacy end point was complete or partial response at end of caspofungin treatment. Response at week 12, survival and safety were additional end points. Enrollment was stopped prematurely because of low accrual, with 42 enrolled and 24 eligible, giving the study a power of 85%. Transplant was from unrelated donors in 16 patients; acute or chronic GVHD was present in 15. In all, 12 patients were neutropenic (<500/microl) at baseline, 10 received steroids and 16 calcineurin inhibitors or sirolimus. Median duration of caspofungin treatment was 24 days. At the end of caspofungin therapy, 10 (42%) patients had complete or partial response (95% confidence interval: 22-63%); 1 (4%) and 12 (50%) had stable and progressing disease, respectively; one was not evaluable. At week 12, eight patients (33%) had complete or partial response. Survival rates at week 6 and 12 were 79 and 50%, respectively. No patient had a drug-related serious adverse event or discontinued because of toxicity. Caspofungin first-line therapy was effective and well tolerated in allogeneic hematopoietic SCT patients with mycologically documented IA.
Resumo:
Visualization is a relatively recent tool available to engineers for enhancing transportation project design through improved communication, decision making, and stakeholder feedback. Current visualization techniques include image composites, video composites, 2D drawings, drive-through or fly-through animations, 3D rendering models, virtual reality, and 4D CAD. These methods are used mainly to communicate within the design and construction team and between the team and external stakeholders. Use of visualization improves understanding of design intent and project concepts and facilitates effective decision making. However, visualization tools are typically used for presentation only in large-scale urban projects. Visualization is not widely accepted due to a lack of demonstrated engineering benefits for typical agency projects, such as small- and medium-sized projects, rural projects, and projects where external stakeholder communication is not a major issue. Furthermore, there is a perceived high cost of investment of both financial and human capital in adopting visualization tools. The most advanced visualization technique of virtual reality has only been used in academic research settings, and 4D CAD has been used on a very limited basis for highly complicated specialty projects. However, there are a number of less intensive visualization methods available which may provide some benefit to many agency projects. In this paper, we present the results of a feasibility study examining the use of visualization and simulation applications for improving highway planning, design, construction, and safety and mobility.
Resumo:
The Iowa General Assembly, during its 2010 legislative session, created a new body, the Public Safety Advisory Board (PSAB). The purpose of the Board is to provide the General Assembly with an analysis of current and proposed criminal code provisions. The mission of this Board is to provide research, evaluation, and data to the General Assembly to facilitate improvement in the criminal justice system in Iowa in terms of public safety, improved outcomes, and appropriate use of public resources.
Resumo:
Access management involves balancing the dual roles that roadways must play - through travel and access to property and economic activity. When these roles are not in proper balance, the result is a roadway system that functions sub-optimally. Arterial routes that have a too high driveway density and provide overly extensive access to property have high crash rates and begin to suffer in terms of traffic operations. Such routes become congested, delays increase, and mean travel speeds decline. The Iowa access management research and awareness project has had four distinct phases. Phase I involved a detailed review of the extensive national access management literature so lessons learned elsewhere could be applied in Iowa. In Phase II original case study research was conducted in Iowa. Phase III of the project concentrated on outreach and education about access management. Phase IV of the Iowa access management project extended the work conducted during Phases II and III. The main work products for Phase IV were as follows: 1) three additional before and after case studies, illustrating the impacts of various access management treatments on traffic safety, traffic operations, and business vitality; 2) an access management handbook aimed primarily at local governments in Iowa; 3) a modular access management toolkit with brief descriptions of various access management treatments and considerations; and 4) an extensive outreach plan aimed at getting the results of Phases I through IV of the project out to diverse audiences in Iowa and elsewhere.
Resumo:
The objective of this research project was to evaluate the construction and service performance of ammonium phosphate/fly ash (APFA) treated base courses of crushed fines and/or unprocessed sand. Specific test results related to construction of the test sections were included in the 1987 construction report by Iowa State University. The performance of the experimental sections is dealt with in this final report. This 1986 project demonstrated that in all cases the control sections utilizing a Type B base experienced dramatically less cracking in the surface than the APFA treated base sections. The cost per mix and subsequent surface maintenance costs for the APFA base sections, especially those having a substantial amount of limestone, were higher than the Type B base control sections. This type of construction may prove to be economical only when petroleum product costs escalate.
Resumo:
This bulletin is a compilation of the reports on completed research done for the Iowa State Highway Research Board Project HR-1, "The Loess and Glacial Till Materials of Iowa; an Investigation of Their Physical and Chemical Properties and Techniques for Processing Them to Increase Their All-Weather Stability for Road Construction.” The research, started in 1950, was done by the Iowa Engineering Experiment Station under its project 283-S. The project was supported by funds from the Iowa State Highway Commission.
Resumo:
Nanotechnology is becoming part of our daily life in a wide range of products such as computers, bicycles, sunscreens or nanomedicines. While these applications already become reality, considerable work awaits scientists, engineers, and policy makers, who want such nanotechnological products to yield a maximum of benefit at a minimum of social, environmental, economic and (occupational) health cost. Considerable efforts for coordination and collaboration in research are needed if one wants to reach these goals in a reasonable time frame and an affordable price tag. This is recognized in Europe by the European Commission which funds not only research projects but also supports the coordination of research efforts. One of these coordination efforts is NanoImpactNet, a researcher-operated network, which started in 2008 promote scientific cross-talk across all disciplines on the health and environmental impact of nanomaterials. Stakeholders contribute to these activities, notably the definition of research and knowledge needs. Initial discussions in this domain focused on finding an agreement on common metrics, and which elements are needed for standardized approaches for hazard and exposure identification. There are many nanomaterial properties that may play a role. Hence, to gain the time needed to study this complex matter full of uncertainties, researchers and stakeholders unanimously called for simple, easy and fast risk assessment tools that can support decision making in this rapidly moving and growing domain. Today, several projects are starting or already running that will develop such assessment tools. At the same time, other projects investigate in depth which factors and material properties can lead to unwanted toxicity or exposure, what mechanisms are involved and how such responses can be predicted and modelled. A vision for the future is that once these factors, properties and mechanisms are understood, they can and will be accounted for in the development of new products and production processes following the idea of "Safety by Design". The promise of all these efforts is a future with nanomaterials where most of their risks are recognized and addressed before they even reach the market.
Resumo:
Recent literature has discussed the unintended consequences of clinical information technologies (IT) on patient safety, yet there has been little discussion about the safety concerns in the area of consumer health IT. This paper presents a range of safety concerns for consumers in social media, with a case study on YouTube. We conducted a scan of abstracts on 'quality criteria' related to YouTube. Five areas regarding the safety of YouTube for consumers were identifi ed: (a) harmful health material targeted at consumers (such as inappropriate marketing of tobaccoor direct-to-consumer drug advertising); (b) public display of unhealthy behaviour (such as people displaying self-injury behaviours or hurting others); (c) tainted public health messages (i.e. the rise of negative voices againstpublic health messages); (d) psychological impact from accessing inappropriate, offensive or biased social media content; and (e) using social media to distort policy and research funding agendas. The examples presented should contribute to a better understanding about how to promote a safe consumption and production of social media for consumers, and an evidence-based approach to designing social media interventions for health. The potential harm associated with the use of unsafe social media content on the Internet is a major concern. More empirical and theoretical studies are needed to examine how social media infl uences consumer health decisions, behaviours and outcomes, and devise ways to deter the dissemination of harmful infl uences in social media.
Resumo:
This thesis gives an overview of the validation process for thermal hydraulic system codes and it presents in more detail the assessment and validation of the French code CATHARE for VVER calculations. Three assessment cases are presented: loop seal clearing, core reflooding and flow in a horizontal steam generator. The experience gained during these assessment and validation calculations has been used to analyze the behavior of the horizontal steam generator and the natural circulation in the geometry of the Loviisa nuclear power plant. The cases presented are not exhaustive, but they give a good overview of the work performed by the personnel of Lappeenranta University of Technology (LUT). Large part of the work has been performed in co-operation with the CATHARE-team in Grenoble, France. The design of a Russian type pressurized water reactor, VVER, differs from that of a Western-type PWR. Most of thermal-hydraulic system codes are validated only for the Western-type PWRs. Thus, the codes should be assessed and validated also for VVER design in order to establish any weaknesses in the models. This information is needed before codes can be used for the safety analysis. Theresults of the assessment and validation calculations presented here show that the CATHARE code can be used also for the thermal-hydraulic safety studies for VVER type plants. However, some areas have been indicated which need to be reassessed after further experimental data become available. These areas are mostly connected to the horizontal stem generators, like condensation and phase separation in primary side tubes. The work presented in this thesis covers a large numberof the phenomena included in the CSNI code validation matrices for small and intermediate leaks and for transients. Also some of the phenomena included in the matrix for large break LOCAs are covered. The matrices for code validation for VVER applications should be used when future experimental programs are planned for code validation.