998 resultados para respiratory metabolism
Resumo:
The disturbances of the cholesterol synthesis and metabolism described in Alzheimer's disease (AD) may be both a consequence of the neurodegenerative process and a contributor to the pathogenesis. These putative relationships and their underlying mechanisms are not well understood. The aim of this study was to evaluate the relationship between the cerebral and extracerebral cholesterol synthesis and metabolism, and the AD pathology as reflected by CSF markers in humans. We evaluated the relationships between the plasma and the cerebrospinal fluid (CSF) concentrations of cholesterol, the cholesterol precursors lanosterol, lathosterol and desmosterol, and the cholesterol elimination products 24S-hydroxycholesterol and 27-hydroxycholesterol, and the CSF markers for AD pathology Aβ1-42 and p-tau181 in 86 subjects with normal cognition and in 107 AD patients. CSF desmosterol, cholesterol and 24S-hydroxycholesterol in the AD group, and CSF 24S-hydroxycholesterol in the control group correlated with the p-tau181 levels. Neither CSF nor plasma concentrations of the included compounds correlated with the CSF Aβ1-42 levels. In multivariate regression tests including age, gender, albumin ratio, number of the APOEε4 alleles, and diagnosis, p-tau181 levels independently predicted the CSF desmosterol, cholesterol and 24S-hydroxycholesterol concentrations. The associations remained significant for CSF cholesterol and 24S-hydroxycholesterol when analyses were separately performed in the AD group. The results suggest that alterations of CNS cholesterol de novo genesis and metabolism are related to neurodegeneration and in particular to the cerebral accumulation of phosphorylated tau.
Resumo:
Two related and significant issues may elicit perplexity in medicinal chemists and are discussed here. First, a broad presentation of the pharmacological and toxicological consequences of drug metabolism should justify the significance of drug metabolism and serve as an incentive to further study. When comparing the pharmacological activities of a drug and its metabolite(s), a continuum is found which ranges from soft drugs (no active metabolites) to prodrugs (inactive per se, as illustrated here with clopidogrel and prasugrel). Innumerable intermediate cases document drugs whose activity is shared by one or more metabolites, as exemplified with tamoxifen. The toxicological consequences of metabolism at the molecular, macromolecular, and macroscopic levels are manyfold. A brief overview is offered together with a summary of the reactions of toxification and detoxification of the antiepileptic valproic acid. The second issue discussed in the review is a comparison of the relative significance of cytochromes P450 and other oxidoreductases (EC 1), hydrolases (EC 3), and transferases (EC 2) in drug metabolism, based on a 'guesstimate' of the number of drug metabolites that are known to be produced by them. The conclusion is that oxidoreductases are the main enzymes responsible for the formation of toxic or active metabolites, whereas transferases play the major role in producing inactive and nontoxic metabolites.
Resumo:
IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.
Resumo:
Resting metabolic rate was measured in 10 healthy volunteers (25 yr, 73 kg, 182 cm) for 1 h before and 4 h during intravenous (iv) fructose administration (20% at 50 mumol.kg-1.min-1) with (+P) or without (-P) propranolol (100 micrograms/kg, 1 microgram.kg-1.min-1) during the last 2 h. Some subjects were studied a further 2 h with fructose infusion and +P or -P in hyperinsulinemic (2.9 pmol.kg-1.min-1) euglycemic conditions. Glucose turnover ([3-3H]glucose, 20 muCi bolus and 0.2 muCi/min) was calculated over 30 min at 0, 2, 4, and 6 h. The thermic effect of iv fructose was approximately 7.5% and decreased to 4.9 +/- 0.4% (P less than 0.01) +P. During the euglycemic clamp the thermic effect was 6.2 +/- 0.9% (-P) and 5.3 +/- 0.9% (+P). Hepatic glucose production (HGP) was 11.7 mumol.kg-1.min-1 (0 h) and did not change after 2 h iv fructose (11.8 +/- 0.5 and 9.8 +/- 0.6 mumol.kg-1.min-1 -P and +P, respectively) but increased to 13.8 +/- 0.9 (-P) and 12.9 +/- 0.8 mumol.kg-1.min-1 (+P) (P less than 0.01) after 4 h. HGP was suppressed to varying degrees during the euglycemic clamp. It is concluded that 1) the greater thermic effect of fructose compared with glucose is probably due to continued gluconeogenesis (which is suppressed by glucose or glucose-insulin) and the energy cost of fructose metabolism to glucose in the liver. 2) There is a sympathetically mediated component to the thermic effect of fructose (approximately 30%) that is not mediated by elevated plasma insulin concentrations similar to those observed with iv glucose.
Resumo:
Adaptation of 24-h energy expenditure (24-h EE) to seasonal variations in food availability was studied, by using a respiration chamber, in 18 rural Gambian men on three occasions: period 1--at the end of the rainy season, which is characterized by low food availability; period 2--during the nutritionally favorable dry season; and period 3--at the onset of the following rainy season. From periods 1 to 2 body weight increased by 2.8 +/- 0.4 kg, and a rise in 24-h EE was observed (from 8556 +/- 212 kJ/d to 9166 +/- 224 kJ/d), which was correlated to weight change (r = 0.73, P less than 0.001). During period 3, 24-h EE averaged 8740 +/- 194 kJ/d. Diet-induced thermogenesis increased significantly from periods 1 to 2 (5.9 +/- 0.5% to 8.2 +/- 0.8%) and subsequently decreased to 3.6 +/- 0.6% during period 3. In rural Gambian men, metabolic adaptations in response to seasonal changes in food availability are reflected by a decrease in body weight, mainly manifested by a loss of fat-free mass accompanied by a decreased 24-h EE and a lowered diet-induced thermogenesis.
Resumo:
Methylmalonyl-CoA mutase (MCM) and propionyl-CoA carboxylase (PCC) are the key enzymes of the catabolic pathway of propionate metabolism and are mainly expressed in liver, kidney and heart. Deficiency of these enzymes leads to two classical organic acidurias: methylmalonic and propionic aciduria. Patients with these diseases suffer from a whole spectrum of neurological manifestations that are limiting their quality of life. Current treatment does not seem to effectively prevent neurological deterioration and pathophysiological mechanisms are poorly understood. In this article we show evidence for the expression of the catabolic pathway of propionate metabolism in the developing and adult rat CNS. Both, MCM and PCC enzymes are co-expressed in neurons and found in all regions of the CNS. Disease-specific metabolites such as methylmalonate, propionyl-CoA and 2-methylcitrate could thus be formed autonomously in the CNS and contribute to the pathophysiological mechanisms of neurotoxicity. In rat embryos (E15.5 and E18.5), MCM and PCC show a much higher expression level in the entire CNS than in the liver, suggesting a different, but important function of this pathway during brain development.
Resumo:
OBJECTIVE: To evaluate the feasibility and effects of non-invasive pressure support ventilation (NIV) on the breathing pattern in infants developing respiratory failure after extubation. DESIGN: Prospective pilot clinical study; each patient served as their own control. SETTING: A nine-bed paediatric intensive care unit of a tertiary university hospital. PATIENTS: Six patients (median age 5 months, range 0.5-7 months; median weight 4.2 kg, range 3.8-5.1 kg) who developed respiratory failure after extubation. INTERVENTIONS: After a period of spontaneous breathing (SB), children who developed respiratory failure were treated with NIV. MEASUREMENTS AND RESULTS: Measurements included clinical dyspnoea score (DS), blood gases and oesophageal pressure recordings, which were analysed for respiratory rate (RR), oesophageal inspiratory pressure swing (dPes) and oesophageal pressure-time product (PTPes). All data were collected during both periods (SB and NIV). When comparing NIV with SB, DS was reduced by 44% (P < 0.001), RR by 32% (P < 0.001), dPes by 45% (P < 0.01) and PTPes by 57% (P < 0.001). A non-significant trend for decrease in PaCO(2) was observed. CONCLUSION: In these infants, non-invasive pressure support ventilation with turbine flow generator induced a reduction of breathing frequency, dPes and PTPes, indicating reduced load of the inspiratory muscles. NIV can be used with some benefits in infants with respiratory failure after extubation.
Resumo:
Glycogen is a hallmark of mature astrocytes, but its emergence during astrocytic differentiation is unclear. Differentiation of E14 mouse neurospheres into astrocytes was induced with fetal bovine serum (FBS), Leukemia Inhibitory Factor (LIF), or Ciliary Neurotrophic Factor (CNTF). Cytochemical and enzymatic analyses showed that glycogen is present in FBS- or LIF- but not in CNTF-differentiated astrocytes. Glycogenolysis was induced in FBS- and LIF-differentiated astrocytes but glycogen resynthesis was observed only with FBS. Protein targeting to glycogen mRNA expression appeared with glial fibrillary acidic protein and S100beta in FBS and LIF conditions but not with CNTF. These results show that glycogen metabolism constitutes a useful marker of astrocyte differentiation.
Resumo:
ABSTRACT: INTRODUCTION: Hyperlactatemia represents one prominent component of the metabolic response to sepsis. In critically ill patients, hyperlactatemia is related to the severity of the underlying condition. Both an increased production and a decreased utilization and clearance might be involved in this process, but their relative contribution remains unknown. The present study aimed at assessing systemic and muscle lactate production and systemic lactate clearance in healthy human volunteers, using intravenous endotoxin (LPS) challenge. METHODS: Fourteen healthy male volunteers were enrolled in 2 consecutive studies (n = 6 in trial 1 and n = 8 in trial 2). Each subject took part in one of two investigation days (LPS-day with endotoxin injection and placebo-day with saline injection) separated by one week at least and in a random order. In trial 1, their muscle lactate metabolism was monitored using microdialysis. In trial 2, their systemic lactate metabolism was monitored by means of a constant infusion of exogenous lactate. Energy metabolism was monitored by indirect calorimetry and glucose kinetics was measured with 6,6-H2 glucose. RESULTS: In both trials, LPS increased energy expenditure (p = 0.011), lipid oxidation (p<0.0001), and plasma lactate concentration (p = 0.016). In trial 1, lactate concentration in the muscle microdialysate was higher than in blood, indicating lactate production by muscles. This was, however, similar with and without LPS. In trial 2, calculated systemic lactate production increased after LPS (p = 0.031), while lactate clearance remained unchanged. CONCLUSIONS: LPS administration increases lactatemia by increasing lactate production rather than by decreasing lactate clearance. Muscle is, however, unlikely to be a major contributor to this increase in lactate production. TRIAL REGISTRATION: ClinicalTrials.gov NCT01647997.
Resumo:
The aim of this study was to investigate the synergistic effects of endurance training and hypoxia on endurance performance in normoxic and hypoxic conditions (approximately 3000 m above sea level) as well as on lactate and glucose metabolism during prolonged exercise. For this purpose, 14 well-trained cyclists performed 12 training sessions in conditions of normobaric hypoxia (HYP group, n = 7) or normoxia (NOR group, n = 7) over 4 weeks. Before and after training, lactate and glucose turnover rates were measured by infusion of exogenous lactate and stable isotope tracers. Endurance performance was assessed during incremental tests performed in normoxia and hypoxia and a 40 km time trial performed in normoxia. After training, performance was similarly and significantly improved in the NOR and HYP groups (training, P < 0.001) in normoxic conditions. No further effect of hypoxic training was found on markers of endurance performance in hypoxia (training x hypoxia interaction, n.s.). In addition, training and hypoxia had no significant effect on lactate turnover rate. In contrast, there was a significant interaction of training and hypoxia (P < 0.05) on glucose metabolism, as follows: plasma insulin and glucose concentrations were significantly increased; glucose metabolic clearance rate was decreased; and the insulin to glucagon ratio was increased after training in the HYP group. In conclusion, our results show that, compared with training in normoxia, training in hypoxia has no further effect on endurance performance in both normoxic and hypoxic conditions or on lactate metabolic clearance rate. Additionally, these findings suggest that training in hypoxia impairs blood glucose regulation in endurance-trained subjects during exercise.
Resumo:
This study investigates the effects of digoxin, an inhibitor of the Na+ pump (Na(+)-K(+)-ATPase), on resting metabolic rate (RMR), respiratory quotient (RQ), and nutrient oxidation rate. Twelve healthy male subjects followed a double-blind protocol design and received either 1 mg/day digoxin or a placebo 2 days before indirect calorimetry measurements. Digoxin induced a 0.22 +/- 0.07 kJ/min or 3.8 +/- 1.5% (mean +/- SE, P = 0.01) decrease in RMR and a 0.40 +/- 0.13 kJ/min (P = 0.01) decrease in fat oxidation rate, whereas carbohydrate and protein oxidation rates did not change significantly. A dose-response relationship between serum digoxin and RQ was observed. These results suggest that digoxin reduces not only RMR but also fat oxidation rate by mechanisms that remain to be elucidated. Because a linkage and an association between genes coding the Na(+)-K(+)-ATPase and the RQ have been previously observed, the present demonstration of an effect of Na(+)-K(+)-ATPase inhibition on fat oxidation rate strengthens the concept that the activity of this enzyme may play a role in body weight regulation.
Resumo:
INTRODUCTION. A two-step assessment (readiness to wean (RW) followed by spontaneousbreathing trial (SBT)) of predefined criteria is recommended before planned extubation(PE)1.OBJECTIVES. We aimed to evaluate if compliance to all guideline criteria was associatedwith better respiratory outcome within 48 h after PE.METHODS. The data (extracted from our clinical information system) of 458 consecutivepatients who underwent PE after C48 h of invasive ventilation in our medico-surgical ICUwere analyzed. We evaluated compliance with guidelines [1] regarding respiratory rate, tidalvolume, PaO2, FiO2, PEEP, PaCO2, pH, heart rate, systolic arterial pressure and arrhythmiaduringRWand SBT assessment (RW and SBT within 2 h). A patient was classified as RW+ ifallRWcriteria were fulfilled andRW-if at least 1 criterion was violated. The same approachwas used to define SBT+ and SBT- patients. During the 48 h following PE, we assessed theoccurrence of post-PE respiratory failure (PRF) (defined as the presence of at least 1 consensuscriterion of respiratory failure [1]), reintubation (after NIV failure or because of immediateintubation criteria) and cumulative duration of post-PE ventilation (PPEV = Post-PE invasive+ non-invasive ventilation). ICU mortality was recorded. Comparisons for variousoutcomes were performed by Chi-square and t tests.RESULTS. All consensus criteria were fulfilled in 77.3% of the patients during RW and in68.1% of the patients during SBT.[Compliance to weaning criteria and outcome]N = 458 PRF (%) Reintubation (%) PPEV (min) ICU mortality (%)All patients 53.5 10.0 542 ± 664 6.1RW+ 50.0 9.3 490 ± 626 5.4RW- 65.4* 12.5 718 ± 757** 8.7SBT+ 52.6 8.0 498 ± 594 6.7SBT- 55.5 14.4*** 637 ± 788**** 4.8Occurrence of PRF only was not associated with increased ICU mortality: 4.2 versus 7.8%,p = 0.11. By contrast, ICU mortality was significantly increased in patients requiring reintubation:21.7 versus 4.4%. p\0.001; * p = 0.006 RW+ versus RW-; ** p = 0.003RW+ versus RW-; *** p = 0.035 SBT+ versus SBT-; **** p = 0.030 SBT+ versusSBTCONCLUSIONS.In our ICU, compliance to all criteria of the two-step published approach ofrespiratory weaning was not optimal but reintubation rate was comparable to published data.Compliance with consensus conference guidelines was associated with lower reintubation rateand shorter PPEV but not with ICU mortality. As mortality was increased by reintubation,more sensitive and specific criteria to predict the risk of reintubation are probably needed.REFERENCE. Boles JM, et al. Eur Respir J 2007;29:1033-56.
Resumo:
The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose, and xenobiotic metabolism. Impairment of this rhythm has been shown to lead to diverse pathologies, including metabolic syndrome. Currently, it is supposed that the circadian clock regulates metabolism mostly by regulating expression of liver enzymes at the transcriptional level. Here, we show that the circadian clock also controls hepatic metabolism by synchronizing a secondary 12 hr period rhythm characterized by rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock and provokes deregulation of endoplasmic reticulum-localized enzymes. This leads to impaired lipid metabolism, resulting in aberrant activation of the sterol-regulated SREBP transcription factors. The resulting aberrant circadian lipid metabolism in mice devoid of the circadian clock could be involved in the appearance of the associated metabolic syndrome.
Resumo:
The use of urinary hexane diamine (HDA) as a biomarker to assess human respiratory exposure to hexamethylene diisocyanate (HDI) aerosol was evaluated. Twenty-three auto body shop workers were exposed to HDI biuret aerosol for two hours using a closed exposure apparatus. HDI exposures were quantified using both a direct-reading instrument and a treated-filter method. Urine samples collected at baseline, immediately post exposure, and every four to five hours for up to 20 hours were analyzed for HDA using gas chromatography and mass spectrometry. Mean urinary HDA (microg/g creatinine) sharply increased from the baseline value of 0.7 to 18.1 immediately post exposure and decreased rapidly to 4.7, 1.9 and 1.1, respectively, at 4, 9, and 18 hours post exposure. Considerable individual variability was found. Urinary HDA can assess acute respiratory exposure to HDI aerosol, but may have limited use as a biomarker of exposure in the workplace. [Authors]