957 resultados para replacement of corn


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Phyllosilicates occurring as replacements of olivine, clinopyroxene and interstitial materials and as veins or fracture-fillings in hydrothermally altered basalts from DSDP Hole 504B, Leg 83 have been studied using transmission and analytical electron microscopy. The parageneses of phyllosilicates generally change systematically with depth and with the degree of alteration, which in turn is related to permeability of basalts. Saponite and some mixed-layer chlorite/smectite are the dominant phyllosilicates at the top of the transition zone. Chlorite, corrensite, and mixed-layer chlorite/corrensite occur mainly in the lower transition zone and upper levels of the sheeted dike zone. Chlorite, talc, and mixed-layer talc/chlorite are the major phyllosilicates in the sheeted dike zone, although replacement of talc or olivine by saponite is observed. The phyllosilicates consist of parallel or subparallel discrete packets of coherent layers with packet thicknesses generally ranging from < 100 A to a few hundred A. The packets of saponite layers are much smaller or less well defined than those of chlorite, corrensite and talc, indicating poorer crystallinity of saponite. By contrast, chlorite and talc from the lower transition zone and the sheeted dike zone occur in packets up to thousands of A thick. The Si/(Si + A1) ratio of these trioctahedral phyllosilicates increases and Fe/(Fe + Mg) decreases in the order chlorite, corrensite, saponite, and talc. These relations reflect optimal solid solution consistent with minimum misfit of articulated octahedral and tetrahedral sheets. Variations in composition of hydrothermal fluids and precursor minerals, especially in Si/(Si+A1) and Fe/(Fe+Mg) ratios, are thus important factors in controlling the parageneses of phyllosilicates. The phyllosilicates are generally well crystallized discrete phases, rather than mixed-layered phases, where they have been affected by relatively high fluid/rock ratios as in high-permeability basalts, in veins, or areas adjacent to veins. Intense alteration in basalts with high permeability (indicating high fluid/rock ratios) is characterized by pervasive albitization and zeolitization. Minimal alteration in the basalts without significant albitization and zeolitization is characterized by the occurrence of saponite ± mixed-layer chlorite/smectite in the low-temperature alteration zone, and mixed-layer chlorite/corrensite or mixed-layer talc/chlorite in the high-temperature alteration zone. Textural non-equilibrium for phyllosilicates is represented by mixed layering and poorly defined packets of partially incoherent layers. The approach to textural equilibrium was controlled largely by the availability of fluid or permeability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The sediments recovered on Deep Sea Drilling Project Leg 54 appear to be mixtures of the normal pelagic sediments of the area and hydrothermally produced manganese and iron phases. The latter are mineralogically and chemically very similar to phases recovered from surficial sampling of the mounds. The hydrothermal nontronite which is approximately 15 meters thick in the three holes is essentially free of carbonate or detrital contaminants. The basal sediments are similar to the carbonate oozes presently being deposited in the region, but are enriched in Mn and Fe. This enrichment appears to be the result of hydrothermal deposition that took place at or near the spreading center and may not be associated with the mounds formation. Three different hypotheses for the formation of the nontronite layer and the mounds deposits are considered. An initial deposition of a widespread nontronite layer and subsequent diapiric-like movement of the layer into carbonates could account for the observed stratigraphy; however, if this be correct, analogous deposits should be present in other DSDP sites. The second hypothesis - replacement of the normal sediments by nontronite - may be feasible, but the high purity of the nontronite requires dissolution and removal of refractory elements. The third hypothesis, metal deposition in an advancing oxidation gradient, is compatible with submersible observations of the mounds; however, it can account only for the high purity of the nontronite by very rapid deposition of the hydrothermal phases.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Galicia margin lies northwest of the Iberian Peninsula and is a passive ocean margin with thin sedimentary cover. Altered peridotite was recovered from ODP Site 637, on the north-trending ridge at the western edge of the margin, near the oceanic/continental crust boundary. The altered ultramafics were originally clinopyroxene-rich upper mantle harzburgites and are now extensively serpentinized (>85%) and cut by very late-stage carbonate veins. Despite pervasive late, low-temperature alteration, evidence of early, high-temperature alteration remains. Alteration is apparent as (1) amphibole rims on clinopyroxene (>800°C), (2) hornblende + tremolite (450° to 800°C), (3) breakdown of hornblende to form tremolite + chlorite (<450°C), (4) zoned Cr-spinels, (5) hydration of orthopyroxene and olivine to serpentine, (6) serpentine veins, (7) replacement of pyroxene and olivine by calcite, and (8) calcite veins and vugs. Both the relict igneous and the high-temperature alteration minerals (amphiboles) show evidence of brittle deformation. Subsequent low-temperature alteration veins and minerals are deformed only in faulted and brecciated zones. This textural evidence suggests that the low-temperature alteration occurred after emplacement of the ultramafics at the surface. Serpentine fills tension fractures in orthopyroxene, and both serpentine and calcite fill tension cracks in olivine. The high-temperature alterations in these samples are similar to those found in oceanic fracture zone and ophiolite ultramafics. This widespread occurrence of high-temperature alteration suggests that hot fluids were pervasive in these ultramafic blocks. Localization of high-temperature alteration close to large carbonate veins suggests channelization of the late, low-temperature fluids. Earlier hydrations (e.g., high-temperature alterations and serpentinization) were pervasive.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mineralogical and geochemical analyses were performed on 40 ash layers of Pleistocene to late Miocene age, recovered during Leg 124 in the Celebes and Sulu Seas (Sites 767, 768, and 769). They provide information on alteration processes related to burial diagenesis. The zonal distribution of secondary volcanic products emphasizes a major diagenetic change, characterized by the complete replacement of volcanic glass by an authigenic smectite-phillipsite assemblage, in tephra layers dated at 3.5-4 Ma. This diagenetic "event" occurs simultaneously in the two basins, and, on the basis of isotopic data, under low-temperature conditions. It is independent of distinct sedimentation rates and related to a relative quiescence of on-land volcanic activity. This period suggests a more uniform paleooceanographic situation having tectonic significance, and probably reflects a kinetic and environmental control of diagenetic reactions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Interstitial water analyses from sediments collected during Leg 25 of the Deep Sea Drilling Project have revealed that in the southwest Indian Ocean, great chemical activity exists in sediments in various depositional environments. Variable sedimentation rates allow us to set some interesting boundary conditions on chemical and transport processes in these interstitial waters, particularly with regard to the distribution of dissolved sulfate. In terrigenous rapidly deposited sediments, large depletions are observed in magnesium and potassium, whereas relatively small decreases in dissolved calcium occur. In slowly deposited detrital sediments, also, large decreases in potassium and magnesium coincide with very large calcium increases. In truly pelagic sediments, a one to one replacement of magnesium by calcium is observed in the interstitial waters, presumably due to reactions in the basal sediment layers. Biogenous deposits have great influence on dissolved silica (sponge spicules and radiolarians) and on dissolved strontium (carbonate recrystallization). Otherwise, dissolved silica reflects the clay mineralogy and shows variations which seem particularly dependent on the presence or absence of kaolinite. Variable dissolved manganese values reflect reducing conditions and/or availability of manganese in the solid phases for mobilization in reducing sediments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Replacement minerals in olivine record the evolution of hydrothermal alteration between 1600 and 2000 mbsf in the sheeted dike complex in Hole 504B. 1. Talc (+ magnetite) rim on olivine represents the earliest alteration. Talc probably crystallized during initial cooling of the dikes. 2. The partial breakdown of talc to "deweylite", a chaotic mixture of serpentine and Al-free stevensite, was facilitated by further cooling and a somewhat increased fluid:rock interaction in the dikes. 3. The presence of chlorite veins and the replacement of unaltered olivine cores, talc, and deweylite and of other silicates by chlorite suggest fracturing of the rocks during cooling (shrinkage cracks) and local influx of seawater into the dikes. 4. Late amphibole veins and locally extensive amphibole alteration indicate increasing temperature and the development of new sets of fractures, possibly due to the injection of fresh magma. Several generations of chlorite and amphibole veins are present in the dikes. Offset veins and the crack-seal texture within veins in the dikes suggest that the alteration cycle was probably repeated with the injection of each set of new dikes. Presently measured temperatures (195°C) at 2000 m depth in Hole 504B indicate that deweylite, which was previously considered a low-temperature mineral, can form well above its previously estimated crystallization temperature of 50°C.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Basalts recovered from Hole 504B during ODP Leg 111 are more or less altered, but there is no sign of strong shear stress or widespread penetrative deformation; hence, they retain well their primary (igneous) structures and textures. The effect of alteration is recognized as the partial or total replacement of primary minerals (olivine, clinopyroxene, and plagioclase) by secondary minerals and as the development of secondary minerals in open spaces (e.g., veins, fractures, vugs, or breccia matrix). The secondary minerals include zeolite (laumontite and stilbite), prehnite, chlorite, epidote, Plagioclase (albite and/or oligoclase), amphibole (anthophyllite, cummingtonite, actinolite, and hornblende), sodic augite, sphene, talc, anhydrite, chalcopyrite, pyrite, Fe-Ti oxide, and quartz. Selected secondary minerals from several tens of samples were analyzed by means of an electron-probe microanalyzer; the results are presented along with brief considerations of their compositional features. In terms of the model basaltic system, the following two types of low-variance (three-phase) mineral assemblages were observed: prehnite-epidote-laumontite and prehnite-actinolite-epidote; both include chlorite, albite and/or oligoclase, sphene, and quartz. The mineral parageneses delineated by these low-variance mineral assemblages suggest that the metamorphic grade ranges from the zeolite facies to the prehnite-actinolite facies. The common occurrence of prehnite indicates that greenschist facies conditions were not attained even in the deepest level of Hole 504B, which, in a strict sense, contradicts the previous interpretation that the lower portion of Hole 504B suffered greenschist facies alteration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hole 504B, drilled into the 5.9 Ma crust of the southern flank of the Costa Rica Rift, tapped a hydrothermal system in its conductive stage. Three alteration zones were encountered along the 561.5 meters of basement drilled. The upper alteration zone, 274.5 to 584.5 meters below the seafloor (BSF), is characterized by the presence of color zonation in which red halos are located between dark gray inner rock portions and dark gray outer bands. The red halos are characterized by an abundance of iddingsite, and they have higher K2O contents and Fe3+/FeT ratios, but lower SiO2 contents, than the adjacent dark gray inner zones. The dark gray outer bands are characterized by the presence of celadonite-nontronite. Saponite is omnipresent in these three alteration bands. Phillipsite is the only zeolite that occurs in the upper alteration zone. The upper alteration zone is interpreted as being the result of low-temperature alteration, with large amounts of cold oxygenated seawater percolating through the upper ocean crust. In the upper alteration zone, the formation of red halos was both preceded and followed by formation of dark gray outer bands. Then followed formation of dark gray cores. The lower alteration zone (584.5-835.5 m BSF) is characterized by the absence of color zonation, the downward-increasing abundance of pyrite and saponite, and the presence of quartz, talc, and calcite. The chemical changes (downhole MgO enrichment and concomitant CaO depletion) observed in the basalts of the lower alteration zone are thought to result from reactions of oceanic basalts with evolved seawater (i.e., solutions derived from seawater that has already reacted with ocean crust), which is thus depleted in oxygen, potassium, and radiogenic strontium. This alteration process, which was responsible for saponite formation in both the upper and lower alteration zones, was rock dominated, and it took place under suboxic to anoxic conditions during a second stage of alteration. Reaction temperatures could have progressively increased with depth. There is also a zeolitic zone that essentially coincides with the lower part of the upper alteration zone (between 528.5 and 563 m BSF). The host rock adjacent to veins of zeolite exhibits a greenish discoloration due to the intensive replacement of the igneous minerals. The replacement minerals result in significant increases in the bulk rock K2O, MgO, CaO, CO2, and H2O+ contents. The solutions circulating along the newly opened fissures had high Ca activity, and minerals probably precipitated in these fissures at 60°C or 110°C. These hydrothermal solutions circulated later than those responsible for the formation of the minerals that characterize the upper and lower alteration zones.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We studied a unique chrysotile-antigorite serpentinite, drilled on Deep Sea Drilling Project Leg 84 (Site 566) in the Guatemala forearc. Our in situ major and trace element data provide new constraints on possible reactions and associated trace element mobilisation during shallow serpentinite subduction. Chrysotile of the studied serpentinite, formed by the hydration of an upper mantle peridotite precursor, is partially replaced by antigorite (alone) which also occurs in 0.5 mm wide unoriented veins crosscutting the rock. Based on textural relationships and the P-T-X stability of the rock forming phases, the replacement of chrysotile by antigorite occurred at T < 300 °C, due to interaction between the chrysotile-serpentinite and an aqueous fluid. A comparison of the chemical compositions of reactant and product phases reveals that about 90% of the Cl, more than 80% of the B and about 50% of the Sr hosted originally by chrysotile was lost during fluid-assisted chrysotile-to-antigorite transformation and accompanying partial dehydration, and documents the much lower affinity of antigorite for trace element uptake than that of chrysotile. The fluid-assisted chrysotile-to-antigorite transformation and associated trace element loss documented here can occur in the shallow (< 30 km) region of subduction zones. This transformation decreases notably the Cl and B inventory of subducting serpentinites, which are regarded as one of the most important carriers of these elements into subduction zones. The evolution of serpentinites during initial subduction stages thus appears to be critical in the recycling of specific trace elements such as B or Cl from forearc to subarc depths.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gabbroic rocks and their late differentiates recovered at Site 735 represent 500 m of oceanic layer 3. The original cooling of a mid-ocean ridge magma chamber, its penetration by ductile shear zones and late intrusives, and the subsequent penetration of seawater through a network of cracks and into highly permeable magmatic hydrofracture horizons are recorded in the metamorphic stratigraphy of the core. Ductile shear zones are characterized by extensive dynamic recrystallization of primary phases, beginning in the granulite facies and continuing into the lower amphibolite facies. Increasing availability of seawater during dynamic recrystallization is reflected in depletions in 18O, increasing abundance of amphibole of variable composition and metamorphic plagioclase of intermediate composition, and more complete coronitic or pseudomorphous static replacement of magmatic minerals. Downcore correlation of synkinematic assemblages, bulk-rock oxygen isotopic compositions, and vein abundance suggest that seawater is introduced into the crust by way of small cracks and veins that mark the end of the ductile phase of deformation. This "deformation-enhanced" metamorphism dominates the upper 180 and the lower 100 m of the core. In the lower 300 m of the core, mineral assemblages of greenschist and zeolite facies are abundant within or adjacent to brecciated zones. Leucocratic veins found in these zones and adjacent host rock contain diopside, sodic plagioclase, epidote, chlorite, analcime, thomsonite, natrolite, albite, quartz, actinolite, sphene, brookite, and sulfides. The presence of zircon, Cl-apatite, sodic plagioclase, sulfides, and diopside in leucocratic veins having local magmatic textures suggests that some of the veins originated from late magmas or from hydrothermal fluids exsolved from such magmas that were subsequently replaced by (seawater-derived) hydrothermal assemblages. The frequent association of these late magmatic intrusive rocks within the brecciated zones suggests that they are both artifacts of magmatic hydrofracture. Such catastrophic fracture and hydrothermal circulation could produce episodic venting of hydrothermal fluids as well as the incorporation of a magmatically derived hydrothermal component. The enhanced permeability of the brecciated zones produced lower temperature assemblages because of larger volumes of seawater that penetrated the crust. The last fractures were sealed either by these hydrothermal minerals or by late carbonate-smectite veins, resulting in the observed low permeability of the core.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gabbros drilled from the shallow (720 m) east wall of the Atlantis II transform on the Southwest Indian Ridge (SWIR; 32°43.40', 57°16.00') provide the most complete record of the stratigraphy and composition of the oceanic lower crust recovered from the ocean basins to date. Lithologies recovered include gabbro, olivine gabbro, troctolite, trondhjemite, and unusual iron-titanium (FeTi) oxide-rich gabbro containing up to 30% FeTi oxides. The plutonic rock sequence represents a tholeiitic fractionation trend ranging from primitive magmas having Mg numbers of 67 to 69 that fractionated troctolites, to highly evolved liquids that crystallized two-pyroxene, FeTi oxide-rich gabbros and, ultimately, trondhjemite. Isotopic compositions of unaltered Leg 118 gabbros are distinct from Indian Ocean mid-ocean ridge basalts (MORB) in having higher 143Nd/144Nd (0.51301-0.51319) and lower 206Pb/204Pb values (17.35-17.67); 87Sr/86Sr values (0.7025-0.7030) overlap those of SWIR basalts, but are generally lower than MORBs from the Southeast Indian Ridge or the Rodrigues Triple Junction. More than one magma composition may have been introduced into the magma chamber during its crystallization history, as suggested by the higher 87Sr/86Sr, 206Pb/204Pb, and lower 143Nd/144Nd values of chromium-rich olivine gabbros from the bottom of Hole 735B. Whole-rock gabbro and plagioclase mineral separate 87Sr/86Sr values are uniformly low (0.7027-0.7030), irrespective of alteration and deformation. By contrast, 87Sr/86Sr values for clinopyroxene (0.7025-0.7039) in the upper half of Hole 735B are higher than coexisting plagioclase and reflect extensive replacement of clinopyroxene by amphibole. Hydrothermal veins and breccias have elevated 87Sr/86Sr values (0.7029-0.7035) and indicate enhanced local introduction of seawater strontium. Oxygen- and hydrogen-isotope results show that secondary amphiboles have uniform dD values of -49 to -54 per mil and felsic hydrothermal veins range from -46 to - 77 per mil. Oxygen-isotope data for secondary amphibole and visibly altered gabbros range to low values (+1.0-+5.5 per mil), and O-isotope disequilibrium between coexisting pyroxene and plagioclase pairs from throughout the stratigraphic column indicates that seawater interacted with much of the gabbro section, but at relatively low water/rock ratios. This is consistent with the persistence of low 87Sr/86Sr values, even in gabbros that were extensively deformed and altered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on a high-resolution analysis of the diatom signal and biogenic bulk components at site GeoB3606-1 (25°S, off Namibia), we describe rapid palaeoceanographic changes in the Benguela Upwelling System (BUS) from early MIS 3 through to the early Holocene (55 000 to 7 000 14C yr BP). Coastal upwelling strongly varied at 25°S from MIS 3 through to MIS 2. The abrupt decrease in the accumulation rate of biogenic silica and diatoms from MIS 3 into MIS 2 records rapid oceanographic changes in the BUS off Namibia. During MIS 3, leakage of excess H4SiO4 acid from the Southern Ocean into low-latitude surface waters, as indicated by the occurrence of Antarctic diatoms, enhanced the production of spores of Chaetoceros at the expense of calcareous phytoplankton. Furthermore, shallower Antarctic Intermediate Water (AAIW) would have enriched the thermocline off Namibia with silicate transported from the Southern Ocean. The strong decrease of the siliceous signal throughout MIS 2 represents a decrease in the nutrient input to the BUS, even though the diatom assemblage is still dominated by spores of the upwelling-associated diatom genus Chaetoceros. Depletion of silicate in the thermocline from the onset of MIS 2 through to the early Holocene reflects the shutdown of AAIW injection from the Southern Ocean into the BUS, causing upwelled waters to become reduced in silicate, hence less favourable for diatom production. The deglaciation and early Holocene are characterised by the replacement of the upwelling-associated flora by a non-upwelling-related diatom community, reflecting weakened upwelling, retraction of the seaward extension of the chlorophyll filament off Lüderitz, and dominance of warmer waters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Samples of recent to Miocene fish and marine mammal bones from the bottom of the Atlantic and Pacific Oceans and Miocene Maikop deposits (Transcaspian region) are studied by X-ray diffraction technique combined with chemical and energy-dispersive analyses. Changes of lattice parameters and chemical composition of bioapatite during fossilization and diagenesis suggest that development of skeletal apatite proceeds from dahllite-type hydroxyapatite to francolite-type carbonate-fluorapatite. It is assumed that jump-type transition from dahllite to francolite during initial fossilization reflects replacement of biogeochemical reactions in living organisms, which are subject to nonlinear laws of nonequilibrium thermodynamics, by physicochemical processes according to the linear equilibrium thermodynamics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Early diagenesis in Leg 126 forearc and backarc sands/sandstones is characterized by the dissolution of intermediate to mafic brown glass, the alteration of colorless rhyolitic glass to clay minerals, precipitation of thin clay-mineral rim cements, and minor precipitation of clinoptilolite cements. Later, more intense diagenesis is restricted to Oligocene forearc basin sediments at Sites 787,792, and 793. In these sections, the effects of early diagenesis have been intensified and overprinted by later diagenetic effects including (1) large-scale dissolution of feldspar and pyroxene crystals, (2) further dissolution of vitric components, (3) precipitation of minor carbonate cements, and (4) pervasive, multiple-staged zeolite cementation. Zeolite minerals present include analcite, mordenite, natrolite, heulandite, wairakite, chabazite, erionite, herschelite, and phillipsite. The latest diagenetic events appear to be the minor dissolution of zeolite cements and the precipitation of minor carbonate and potassium feldspar(?) cements. Observed porosity types include primary interparticles; primary intraparticles in vesicular glass and foraminifers; primary interparticles reduced by compaction and cementation; secondary intraparticles produced by dissolution of feldspar, nonopaque heavy minerals, volcanic glass, and foraminifer tests; and secondary interparticles produced by the dissolution of zeolite cements. Within forearc Oligocene sections at Sites 787 and 792, diagenetic effects appear to decrease with depth in the Oligocene section; however, at Site 793 the majority of samples are intensely altered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Basalts from some holes of the Deep Sea Drilling Project contain secondary K-feldspar which forms pseudomorphs after calcic (>76% An) Plagioclase cores, whereas Plagioclase of rims and microlites (68-74% An) remains unaltered. In basalts of Hole 504B two such grains with relics of Plagioclase in the central parts of phenocysts were recovered. The composition of the Plagioclase rims and of non-replaced phenocrysts is An79-81; the composition of relics is An83. The An and Ab contents of the K-feldspar is higher than in K-feldspar from altered basalt in Hole 418A in the Atlantic Ocean near the Bermuda Rise. Replacement of plagioclases by K-feldspar evidently is caused by oxygen-rich nearbottom sea water penetrating into basalts. The temperature interval of K-feldspathization is probably in the range 30 to 80°C, more-calcic Plagioclase being replaced by K-feldspar at higher temperatures.