976 resultados para relativistic heavy ions reactions
Resumo:
It is a well know that electrons and positive ions are responsible in the case of electric spark. Investigation have been undertaken in the high voltage laboratory to study the effect of injecting ions (both possitive and negative)into the spark gap.Also the effect of paper screens in blocking the ions being invetsigated.
Resumo:
Binuclear complexes of rhodium(I) of the type [(dien)(X)Rh(μ-N-N)Rh(X)(dien)] (dien = 1,5-cyclooctadiene or norbornadiene; N-N = pyrazine, 4,4′-bipyridine or Phenazine and X = Cl or Br) with bridging heterocycles have been isolated and their reactions with carbon monoxide, 2,2′-bipyridine and 1,10-phenanthroline investigated. The crystal structure of [(COD)(Cl)Rh(μ-pyrazine)Rh(Cl)(COD)] has been determined.
Resumo:
In a previous paper, we described the room temperature rapid, selective, reversible, and near quantitative Cu-activated nitroxide radical coupling (NRC) technique to prepare 3-arm polystyrene stars. In this work, we evaluated the Cu-activation mechanism, either conventional atom transfer or single electron transfer (SET), through kinetic simulations. Simulation data showed that one can describe the system by either activation mechanism. We also found through simulations that bimolecular radical termination, regardless of activation mechanism, was extremely low and could be considered negligible in an NRC reaction. Experiments were carried out to form 2- and 3-arm PSTY stars using two ligands, PMDETA and Me6TREN, in a range of solvent conditions by varying the ratio of DMSO to toluene, and over a wide temperature range. The rate of 2- or 3-arm star formation was governed by the choice of solvent and ligand. The combination of Me6TREN and toluene/DMSO showed a relatively temperature independent rate, and remarkably reached near quantitative yields for 2-arm star formation after only 1 min at 25 °C.
Resumo:
High activation of polystyrene with bromine end groups (PSTY-Br) to their incipient radicals occurred in the presence of Cu(I)Br, Me6TREN, and DMSO solvent. These radicals were then trapped by nitroxide species leading to coupling reactions between PSTY-Br and nitroxides that were ultrafast and selective in the presence of a diverse range of functional groups. The nitroxide radical coupling (NRC) reactions have the attributes of a “click” reaction with near quantitative yields of product formed, but through the reversibility of this reaction, it has the added advantage of permitting the exchange of chemical functionality on macromolecules. Conditions were chosen to facilitate the disproportionation of Cu(I)Br to the highly activating nascent Cu(0) and deactivating Cu(II)Br2 in the presence of DMSO solvent and Me6TREN ligand. NRC at room temperature gave near quantitative yields of macromolecular coupling of low molecular weight polystyrene with bromine chain-ends (PSTY-Br) and nitroxides in under 7 min even in the presence of functional groups (e.g., −≡, −OH, −COOH, −NH2, =O). Utilization of the reversibility of the NRC reaction at elevated temperatures allowed the exchange of chain-end groups with a variety of functional nitroxide derivatives. The robustness and orthogonality of this NRC reaction were further demonstrated using the Cu-catalyzed azide/alkyne “click” (CuAAC) reactions, in which yields greater than 95% were observed for coupling between PSTY-N3 and a PSTY chain first trapped with an alkyne functional TEMPO (PSTY-TEMPO-≡).
Resumo:
The methoxycyclophosphazenes [NP(OMe),], (n = 3-6) rearrange on heating to give oxocyclophosphazanes, [N(Me)PO(OMe)],. Isomeric products are formed when n = 4-6. The lH, ,lP, and 13C n.m.r. data for the starting materials and the products are presented. The ethoxy- and n-propoxy-derivatives N,P,( OR)* do not undergo the above rearrangement. The geminal derivatives N,P,R,(OMe), (R = Ph or NHBut) on heating yield both fully and partially rearranged products, namely dioxophosphaz-1 -enes and oxophosphazadienes, as shown by 270- MHz lH n.m.r. spectroscopy. The non-geminal derivative N,P,( NMe,),(OMe), gives only the fully rearranged product N,Me,P,(NMe,),O,(OMe), whose structure has been established from its lH and 31P n.m.r. spectra.
Resumo:
0:- ions have been detected and measured in a positive column of glow discharge in oxygen between 0.04 and 0.17 Torr. A suitable ion-molecule reaction has been proposed, which appears to be supported by the mass spectrometer measurements.
Resumo:
Preferential yield of ring expansion and rearrangement products through α-cleavage of tetramethyl-3-thio-1,3-cyclobutanedione (1) and 3-mercapto-2,2,4-trimethyl-3-pentenoic acid β-(thio lactone) (2) involving diradical and carbene has been observed upon photolysis of 1 and 2.
Resumo:
This thesis explores melodic and harmonic features of heavy metal, and while doing so, explores various methods of music analysis; their applicability and limitations regarding the study of heavy metal music. The study is built on three general hypotheses according to which 1) acoustic characteristics play a significant role for chord constructing in heavy metal, 2) heavy metal has strong ties and similarities with other Western musical styles, and 3) theories and analytical methods of Western art music may be applied to heavy metal. It seems evident that in heavy metal some chord structures appear far more frequently than others. It is suggested here that the fundamental reason for this is the use of guitar distortion effect. Subsequently, theories as to how and under what principles heavy metal is constructed need to be put under discussion; analytical models regarding the classification of consonance and dissonance and chord categorization are here revised to meet the common practices of this music. It is evident that heavy metal is not an isolated style of music; it is seen here as a cultural fusion of various musical styles. Moreover, it is suggested that the theoretical background to the construction of Western music and its analysis can offer invaluable insights to heavy metal. However, the analytical methods need to be reformed to some extent to meet the characteristics of the music. This reformation includes an accommodation of linear and functional theories that has been found rather rarely in music theory and musicology.
Resumo:
Using the mycelial reactions of 435 combinations of 14 Fusarium pseudograminearum and 15 F. graminearum isolates, it was demonstrated for the first time that mycelial reactions/barrage formation cannot be clearly used to distinguish F. graminearum and F. pseudograminearum. Mutually compatible isolates produced very different patterns of compatibility with other isolates. However, about 60% of pairings between F. graminearum and F. pseudograminearum isolates were compatible, indicating common ancestry. The Mantel tests used to determine any possible associations between mycelial compatibility reactions and AFLP genotypic diversity data revealed no association between the two systems in either species. In addition, no association was found between mycelial compatibility reactions and sexual reproduction in the two species. Implications of the higher frequency of mycelial compatibility reactions observed in F. pseudograminearum than in F. graminearum are discussed.
Resumo:
he Dirac generator formalism for relativistic Hamiltonian dynamics is reviewed along with its extension to constraint formalism. In these theories evolution is with respect to a dynamically defined parameter, and thus time evolution involves an eleventh generator. These formulations evade the No-Interaction Theorem. But the incorporation of separability reopens the question, and together with the World Line Condition leads to a second no-interaction theorem for systems of three or more particles. Proofs are omitted, but the results of recent research in this area is highlighted.
Resumo:
Arylalkylcyclopropenethiones undergo highly regioselective photochemical a-cleavage via thioketene carbene intermediates, giving rise to products derived from the less stabilized carbene. UHF MIND0/3 calculations provide an insight into this unexpected regioselectivity. The nx* triplet of cyclopropenethione is calculated to have a highly unsymmetrical geometry with an elongated C-C bond, a delocalized thiaaUyl fragment, and a pyramidal radicaloid carbon (which eventually becomes the carbene center). From this molecular electronic structure, aryl group stabilization is expected to be more effective at the thiaallyl group rather than at the pyramidal radical center. Thus, the stability of the substituted triplet thione rather than that of the thioketene carbene determines the preferred regiochemistry of cleavage. The unusual structure of the cyclopropenethione triplet is suggested to be related to one of the Jahn-Teller distorted forms of the cyclopropenyl radical. An alternative symmetrical structure is adopted by the corresponding triplet of cyclopropenone, partly accounting for its differing photobehavior. A similar structural dichotomy is demonstrated for the corresponding radical anions as well.
Resumo:
Hexafluorodisilane has been prepared by the fluorination of hexachlorodisilane or hexabromodisilane by potassium fluoride in boiling acetonitrile, in yields approximating 45 and 60% respectively. Hexafluorodisilane has been characterised by infrared spectral data, vapour density measurements and analytical data. Both hexafluorodisilane and hexachlorodisilane are found to react with sulfur trioxide when heated to 400°C for 12 h. The products of reaction are silicon tetrafluoride, silica and sulfur dioxide with hexafluorodisilane while hexachlorodisilane in addition gives rise to hexachlorodisiloxane.
Resumo:
Attempts have been made to understand the curing reactions in carboxy-terminated polybutadiene (CTPB), which happens to be the most practical binder in advanced solid composite propellants. The curing of CTPB has been studied for different ratios of curing agents (MAPO and Epoxide) by gel content, molecular weight, crosslink density, and penetration temperature measurements, and the optimum composition of curators for effective curing of CTPB has been determined. Activation energy calculations on the curing of CTPB with 9.5% epoxide and 0.5% MAPO in the temperature range 75100°C gave 14.1 kcal/mol for which a diffusion-controlled or acid-catalyzed epoxide ring opening mechanism has been suggested for the curing process in CTPB.