832 resultados para recursive filtering


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new man-made target tracking algorithm integrating features from (Forward Looking InfraRed) image sequence is presented based on particle filter. Firstly, a multiscale fractal feature is used to enhance targets in FLIR images. Secondly, the gray space feature is defined by Bhattacharyya distance between intensity histograms of the reference target and a sample target from MFF (Multi-scale Fractal Feature) image. Thirdly, the motion feature is obtained by differencing between two MFF images. Fourthly, a fusion coefficient can be automatically obtained by online feature selection method for features integrating based on fuzzy logic. Finally, a particle filtering framework is developed to fulfill the target tracking. Experimental results have shown that the proposed algorithm can accurately track weak or small man-made target in FLIR images with complicated background. The algorithm is effective, robust and satisfied to real time tracking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The search for Earth-like exoplanets, orbiting in the habitable zone of stars other than our Sun and showing biological activity, is one of the most exciting and challenging quests of the present time. Nulling interferometry from space, in the thermal infrared, appears as a promising candidate technique for the task of directly observing extra-solar planets. It has been studied for about 10 years by ESA and NASA in the framework of the Darwin and TPF-I missions respectively. Nevertheless, nulling interferometry in the thermal infrared remains a technological challenge at several levels. Among them, the development of the "modal filter" function is mandatory for the filtering of the wavefronts in adequacy with the objective of rejecting the central star flux to an efficiency of about 105. Modal filtering takes benefit of the capability of single-mode waveguides to transmit a single amplitude function, to eliminate virtually any perturbation of the interfering wavefronts, thus making very high rejection ratios possible. The modal filter may either be based on single-mode Integrated Optics (IO) and/or Fiber Optics. In this paper, we focus on IO, and more specifically on the progress of the on-going "Integrated Optics" activity of the European Space Agency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A spectral performance model, designed to simulate the system spectral throughput for each of the 21 channels in the HIRDLS radiometer, is described. This model uses the measured spectral characteristics of each of the components in the optical train, appropriately corrected for their optical environment, to determine the end-to-end spectral throughput profile for each channel. This profile is then combined with the predicted thermal emission from the atmosphere, arising from the height of interest, to establish an in-band (wanted) to out-of-band (unwanted) radiance ratio. The results from the use of the model demonstrate that the instrument level radiometric requirements for the instrument will be achieved. The optical arrangement and spectral design requirements for filtering in the HIRDLS instrument are described together with a presentation of the performance achieved for the complete set of manufactured filters. Compliance of the predicted passband throughput model to the spectral positioning requi rements of the instrument is also demonstrated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recursive least-squares algorithm with a forgetting factor has been extensively applied and studied for the on-line parameter estimation of linear dynamic systems. This paper explores the use of genetic algorithms to improve the performance of the recursive least-squares algorithm in the parameter estimation of time-varying systems. Simulation results show that the hybrid recursive algorithm (GARLS), combining recursive least-squares with genetic algorithms, can achieve better results than the standard recursive least-squares algorithm using only a forgetting factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a recent paper, Vathsal suggested that a new configuration had been obtained for linear filtering problems, which was distinctly different from the Kalman-Bucy filter. It is shown that this in fact is merely a special case of the filter with a specified input.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper employs a state space system description to provide a pole placement scheme via state feedback. It is shown that when a recursive least squares estimation scheme is used, the feedback employed can be expressed simply in terms of the estimated system parameters. To complement the state feedback approach, a method employing both state feedback and linear output feedback is discussed. Both methods arc then compared with the previous output polynomial type feedback schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A self-tuning proportional, integral and derivative control scheme based on genetic algorithms (GAs) is proposed and applied to the control of a real industrial plant. This paper explores the improvement in the parameter estimator, which is an essential part of an adaptive controller, through the hybridization of recursive least-squares algorithms by making use of GAs and the possibility of the application of GAs to the control of industrial processes. Both the simulation results and the experiments on a real plant show that the proposed scheme can be applied effectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A methodology for identifying equatorial waves is used to analyze the multilevel 40-yr ECMWF Re-Analysis (ERA-40) data for two different years (1992 and 1993) to investigate the behavior of the equatorial waves under opposite phases of the quasi-biennial oscillation (QBO). A comprehensive view of 3D structures and of zonal and vertical propagation of equatorial Kelvin, westward-moving mixed Rossby–gravity (WMRG), and n = 1 Rossby (R1) waves in different QBO phases is presented. Consistent with expectation based on theory, upward-propagating Kelvin waves occur more frequently during the easterly QBO phase than during the westerly QBO phase. However, the westward-moving WMRG and R1 waves show the opposite behavior. The presence of vertically propagating equatorial waves in the stratosphere also depends on the upper tropospheric winds and tropospheric forcing. Typical propagation parameters such as the zonal wavenumber, zonal phase speed, period, vertical wavelength, and vertical group velocity are found. In general, waves in the lower stratosphere have a smaller zonal wavenumber, shorter period, faster phase speed, and shorter vertical wavelength than those in the upper troposphere. All of the waves in the lower stratosphere show an upward group velocity and downward phase speed. When the phase of the QBO is not favorable for waves to propagate, their phase speed in the lower stratosphere is larger and their period is shorter than in the favorable phase, suggesting Doppler shifting by the ambient flow and a filtering of the slow waves. Tropospheric WMRG and R1 waves in the Western Hemisphere also show upward phase speed and downward group velocity, with an indication of their forcing from middle latitudes. Although the waves observed in the lower stratosphere are dominated by “free” waves, there is evidence of some connection with previous tropical convection in the favorable year for the Kelvin waves in the warm water hemisphere and WMRG and R1 waves in the Western Hemisphere, which is suggestive of the importance of convective forcing for the existence of propagating coupled Kelvin waves and midlatitude forcing for the existence of coupled WMRG and R1 waves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A nonlinear general predictive controller (NLGPC) is described which is based on the use of a Hammerstein model within a recursive control algorithm. A key contribution of the paper is the use of a novel, one-step simple root solving procedure for the Hammerstein model, this being a fundamental part of the overall tuning algorithm. A comparison is made between NLGPC and nonlinear deadbeat control (NLDBC) using the same one-step nonlinear components, in order to investigate NLGPC advantages and disadvantages.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new state estimator algorithm is based on a neurofuzzy network and the Kalman filter algorithm. The major contribution of the paper is recognition of a bias problem in the parameter estimation of the state-space model and the introduction of a simple, effective prefiltering method to achieve unbiased parameter estimates in the state-space model, which will then be applied for state estimation using the Kalman filtering algorithm. Fundamental to this method is a simple prefiltering procedure using a nonlinear principal component analysis method based on the neurofuzzy basis set. This prefiltering can be performed without prior system structure knowledge. Numerical examples demonstrate the effectiveness of the new approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new autonomous ship collision free (ASCF) trajectory navigation and control system has been introduced with a new recursive navigation algorithm based on analytic geometry and convex set theory for ship collision free guidance. The underlying assumption is that the geometric information of ship environment is available in the form of a polygon shaped free space, which may be easily generated from a 2D image or plots relating to physical hazards or other constraints such as collision avoidance regulations. The navigation command is given as a heading command sequence based on generating a way point which falls within a small neighborhood of the current position, and the sequence of the way points along the trajectory are guaranteed to lie within a bounded obstacle free region using convex set theory. A neurofuzzy network predictor which in practice uses only observed input/output data generated by on board sensors or external sensors (or a sensor fusion algorithm), based on using rudder deflection angle for the control of ship heading angle, is utilised in the simulation of an ESSO 190000 dwt tanker model to demonstrate the effectiveness of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a world of almost permanent and rapidly increasing electronic data availability, techniques of filtering, compressing, and interpreting this data to transform it into valuable and easily comprehensible information is of utmost importance. One key topic in this area is the capability to deduce future system behavior from a given data input. This book brings together for the first time the complete theory of data-based neurofuzzy modelling and the linguistic attributes of fuzzy logic in a single cohesive mathematical framework. After introducing the basic theory of data-based modelling, new concepts including extended additive and multiplicative submodels are developed and their extensions to state estimation and data fusion are derived. All these algorithms are illustrated with benchmark and real-life examples to demonstrate their efficiency. Chris Harris and his group have carried out pioneering work which has tied together the fields of neural networks and linguistic rule-based algortihms. This book is aimed at researchers and scientists in time series modeling, empirical data modeling, knowledge discovery, data mining, and data fusion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a new image data fusion scheme by combining median filtering with self-organizing feature map (SOFM) neural networks. The scheme consists of three steps: (1) pre-processing of the images, where weighted median filtering removes part of the noise components corrupting the image, (2) pixel clustering for each image using self-organizing feature map neural networks, and (3) fusion of the images obtained in Step (2), which suppresses the residual noise components and thus further improves the image quality. It proves that such a three-step combination offers an impressive effectiveness and performance improvement, which is confirmed by simulations involving three image sensors (each of which has a different noise structure).