992 resultados para real time business intelligence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The detection of avian viruses in wild populations has considerable conservation implications. For DNA-based studies, feathers may be a convenient sample type for virus screening and are, therefore, an increasingly common technique. This is despite recent concerns about DNA quality, ethics, and a paucity of data comparing the reliability and sensitivity of feather sampling to other common sample types such as blood. Alternatively, skeletal muscle tissue may offer a convenient sample to collect from dead birds, which may reveal viraemia. Here, we describe a probe-based quantitative real-time PCR for the relative quantification of beak and feather disease virus (BFDV), a pathogen of serious conservation concern for parrots globally. We used this method to test for BFDV in wild crimson rosellas (Platycercus elegans), and compared three different sample types. We detected BFDV in samples from 29 out of 84 individuals (34.5%). However, feather samples provided discordant results concerning virus presence when compared with muscle tissue and blood, and estimates of viral load varied somewhat between different sample types. This study provides evidence for widespread infection of BFDV in wild crimson rosellas, but highlights the importance of sample type when generating and interpreting qualitative and quantitative avian virus data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This book presents the latest exchange of academic research on all aspects of practicing and managing information using a multidisciplinary approach that examines its quality for organizational growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Business intelligence and analytics (BIA) initiatives are costly, complex and experience high failure rates. Organizations require effective approaches to evaluate their BIA capabilities in order to develop strategies for their evolution. In this paper, we employ a design scienceparadigm to develop a comprehensive BIA effectiveness diagnostic (BIAED) framework that can be easily operationalized. We propose that a useful BIAED framework must assess the correct factors, should be deployed in the proper process context and acquire the appropriateinput from different constituencies within an organization. Drawing on the BIAED framework, we further develop an online diagnostic toolkit that includes a comprehensive survey instrument. We subsequently deploy the diagnostic mechanism within three large organizations in North America (involving over 1500 participants) and use the results toinform BIA strategy formulation. Feedback from participating organizations indicates that the BIA diagnostic toolkit provides insights that are essential inputs to strategy development. This work addresses a significant research gap in the area of BIA effectiveness assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coughing and Clapping: Investigating Audience Experience explores the processes and experiences of attending live music events from the initial decision to attend through to audience responses and memories of a performance after it has happened. The book brings together international researchers who consider the experience of being an audience member from a range of theoretical and empirical perspectives. Whether enjoying a drink at a jazz gig, tweeting at a pop concert or suppressing a cough at a classical recital, audience experience is affected by motivation, performance quality, social atmosphere and group and personal identity. Drawing on the implications of these experiences and attitudes, the authors consider the question of what makes an audience, and argue convincingly for the practical and academic value of that question.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we examine the reliability and validity (in comparison to magnetic resonance imaging; MRI) of real-time ultrasound measures of lumbar erector spinae thickness. We also consider the between-day reliability of the lumbar multifidus muscle area as measured via ultrasound. 23 male subjects aged 21-45 years were measured three times over the course of nine days by one operator. The first (L1) through to the fifth (L5) lumbar vertebral levels were measured on the left and right sides. MRI was performed on the same day as first ultrasound scanning. For between-day intra-rater reliability, intra-class correlation co-efficients (ICCs), standard error of the measurement, minimal detectable difference and co-efficients of variation (CVs) were calculated along with their 95% confidence intervals and Bland-Altman analysis was performed. On Bland-Altman analysis, erector spinae thickness and multifidus area ultrasound measures 'agreed' with equivalent MR measures, though the correlation between MR and ultrasound measures was typically poor to moderate. For both ultrasound measures, the ICCs ranged from 'moderate' to 'excellent' at individual vertebral levels, although multifidus area (CV ranged from 8 to 15%) was less reliable than erector spinae thickness (CV ranged from 6 to 10%). 'Agreement' on Bland-Altmann analysis was present between days for all ultrasound measures. Averaging between sides and between vertebral levels improved reliability. Average erector spinae thickness showed a CV of 5.5% (ICC 0.77) and average multifidus area 6.2% (ICC 0.80).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe an alternative electrochemical technique to monitor covalent bond formation in real-time using nanoparticle-electrode collisions. The method is based on recognising the redox current when MP-11 functionalised chemical reduced graphene oxide (rGO) nanosheets collide with Lomant's reagent modified gold microelectrode. This facile and highly sensitive monitoring method can be useful for investigating the fundamental of single-molecule reactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The success of cloud computing makes an increasing number of real-time applications such as signal processing and weather forecasting run in the cloud. Meanwhile, scheduling for real-time tasks is playing an essential role for a cloud provider to maintain its quality of service and enhance the system's performance. In this paper, we devise a novel agent-based scheduling mechanism in cloud computing environment to allocate real-time tasks and dynamically provision resources. In contrast to traditional contract net protocols, we employ a bidirectional announcement-bidding mechanism and the collaborative process consists of three phases, i.e., basic matching phase, forward announcement-bidding phase and backward announcement-bidding phase. Moreover, the elasticity is sufficiently considered while scheduling by dynamically adding virtual machines to improve schedulability. Furthermore, we design calculation rules of the bidding values in both forward and backward announcement-bidding phases and two heuristics for selecting contractors. On the basis of the bidirectional announcement-bidding mechanism, we propose an agent-based dynamic scheduling algorithm named ANGEL for real-time, independent and aperiodic tasks in clouds. Extensive experiments are conducted on CloudSim platform by injecting random synthetic workloads and the workloads from the last version of the Google cloud tracelogs to evaluate the performance of our ANGEL. The experimental results indicate that ANGEL can efficiently solve the real-time task scheduling problem in virtualized clouds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As clouds have been deployed widely in various fields, the reliability and availability of clouds become the major concern of cloud service providers and users. Thereby, fault tolerance in clouds receives a great deal of attention in both industry and academia, especially for real-time applications due to their safety critical nature. Large amounts of researches have been conducted to realize fault tolerance in distributed systems, among which fault-tolerant scheduling plays a significant role. However, few researches on the fault-tolerant scheduling study the virtualization and the elasticity, two key features of clouds, sufficiently. To address this issue, this paper presents a fault-tolerant mechanism which extends the primary-backup model to incorporate the features of clouds. Meanwhile, for the first time, we propose an elastic resource provisioning mechanism in the fault-tolerant context to improve the resource utilization. On the basis of the fault-tolerant mechanism and the elastic resource provisioning mechanism, we design novel fault-tolerant elastic scheduling algorithms for real-time tasks in clouds named FESTAL, aiming at achieving both fault tolerance and high resource utilization in clouds. Extensive experiments injecting with random synthetic workloads as well as the workload from the latest version of the Google cloud tracelogs are conducted by CloudSim to compare FESTAL with three baseline algorithms, i.e., Non-M igration-FESTAL (NMFESTAL), Non-Overlapping-FESTAL (NOFESTAL), and Elastic First Fit (EFF). The experimental results demonstrate that FESTAL is able to effectively enhance the performance of virtualized clouds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drinking water utilities in urban areas are focused on finding smart solutions facing new challenges in their real-time operation because of limited water resources, intensive energy requirements, a growing population, a costly and ageing infrastructure, increasingly stringent regulations, and increased attention towards the environmental impact of water use. Such challenges force water managers to monitor and control not only water supply and distribution, but also consumer demand. This paper presents and discusses novel methodologies and procedures towards an integrated water resource management system based on advanced ICT technologies of automation and telecommunications for largely improving the efficiency of drinking water networks (DWN) in terms of water use, energy consumption, water loss minimization, and water quality guarantees. In particular, the paper addresses the first results of the European project EFFINET (FP7-ICT2011-8-318556) devoted to the monitoring and control of the DWN in Barcelona (Spain). Results are split in two levels according to different management objectives: (i) the monitoring level is concerned with all the aspects involved in the observation of the current state of a system and the detection/diagnosis of abnormal situations. It is achieved through sensors and communications technology, together with mathematical models; (ii) the control level is concerned with computing the best suitable and admissible control strategies for network actuators as to optimize a given set of operational goals related to the performance of the overall system. This level covers the network control (optimal management of water and energy) and the demand management (smart metering, efficient supply). The consideration of the Barcelona DWN as the case study will allow to prove the general applicability of the proposed integrated ICT solutions and their effectiveness in the management of DWN, with considerable savings of electricity costs and reduced water loss while ensuring the high European standards of water quality to citizens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate model projections show that climate change will further increase the risk of flooding in many regions of the world. There is a need for climate adaptation, but building new infrastructure or additional retention basins has its limits, especially in densely populated areas where open spaces are limited. Another solution is the more efficient use of the existing infrastructure. This research investigates a method for real-time flood control by means of existing gated weirs and retention basins. The method was tested for the specific study area of the Demer basin in Belgium but is generally applicable. Today, retention basins along the Demer River are controlled by means of adjustable gated weirs based on fixed logic rules. However, because of the high complexity of the system, only suboptimal results are achieved by these rules. By making use of precipitation forecasts and combined hydrological-hydraulic river models, the state of the river network can be predicted. To fasten the calculation speed, a conceptual river model was used. The conceptual model was combined with a Model Predictive Control (MPC) algorithm and a Genetic Algorithm (GA). The MPC algorithm predicts the state of the river network depending on the positions of the adjustable weirs in the basin. The GA generates these positions in a semi-random way. Cost functions, based on water levels, were introduced to evaluate the efficiency of each generation, based on flood damage minimization. In the final phase of this research the influence of the most important MPC and GA parameters was investigated by means of a sensitivity study. The results show that the MPC-GA algorithm manages to reduce the total flood volume during the historical event of September 1998 by 46% in comparison with the current regulation. Based on the MPC-GA results, some recommendations could be formulated to improve the logic rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biological nitrogen removal is an important task in the wastewater treatment. However, the actual removal of total nitrogen (TN) in the wastewater treatment plant (WWTP) is often unsatisfactory due to several causes, one of which is the insufficient availability of carbon source. One possible approach to improve the nitrogen removal therefore is addition of external carbon source, while the amount of which is directly related to operation cost of a WWTP. It is obviously necessary to determine the accurate amount of addition of external carbon source according to the demand depending on the influent wastewater quality. This study focused on the real-time control of external carbon source addition based on the on-line monitoring of influent wastewater quality. The relationship between the influent wastewater quality (specifically the concentration of COD and ammonia) and the demand of carbon source was investigated through experiments on a pilot-scale A/O reactor (1m3) at the Nanjing WWTP, China. The minimum doses of carbon source addition at different situations of influent wastewater quality were determined to ensure the effluent wastewater quality meets the discharge standard. The obtained relationship is expected to be applied in the full-scale WWTPs. .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drinking water distribution networks risk exposure to malicious or accidental contamination. Several levels of responses are conceivable. One of them consists to install a sensor network to monitor the system on real time. Once a contamination has been detected, this is also important to take appropriate counter-measures. In the SMaRT-OnlineWDN project, this relies on modeling to predict both hydraulics and water quality. An online model use makes identification of the contaminant source and simulation of the contaminated area possible. The objective of this paper is to present SMaRT-OnlineWDN experience and research results for hydraulic state estimation with sampling frequency of few minutes. A least squares problem with bound constraints is formulated to adjust demand class coefficient to best fit the observed values at a given time. The criterion is a Huber function to limit the influence of outliers. A Tikhonov regularization is introduced for consideration of prior information on the parameter vector. Then the Levenberg-Marquardt algorithm is applied that use derivative information for limiting the number of iterations. Confidence intervals for the state prediction are also given. The results are presented and discussed on real networks in France and Germany.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the development and performance of a low-power sensor node (hardware, software and algorithms) that autonomously controls the sampling interval of a suite of sensors based on local state estimates and future predictions of water flow. The problem is motivated by the need to accurately reconstruct abrupt state changes in urban watersheds and stormwater systems. Presently, the detection of these events is limited by the temporal resolution of sensor data. It is often infeasible, however, to increase measurement frequency due to energy and sampling constraints. This is particularly true for real-time water quality measurements, where sampling frequency is limited by reagent availability, sensor power consumption, and, in the case of automated samplers, the number of available sample containers. These constraints pose a significant barrier to the ubiquitous and cost effective instrumentation of large hydraulic and hydrologic systems. Each of our sensor nodes is equipped with a low-power microcontroller and a wireless module to take advantage of urban cellular coverage. The node persistently updates a local, embedded model of flow conditions while IP-connectivity permits each node to continually query public weather servers for hourly precipitation forecasts. The sampling frequency is then adjusted to increase the likelihood of capturing abrupt changes in a sensor signal, such as the rise in the hydrograph – an event that is often difficult to capture through traditional sampling techniques. Our architecture forms an embedded processing chain, leveraging local computational resources to assess uncertainty by analyzing data as it is collected. A network is presently being deployed in an urban watershed in Michigan and initial results indicate that the system accurately reconstructs signals of interest while significantly reducing energy consumption and the use of sampling resources. We also expand our analysis by discussing the role of this approach for the efficient real-time measurement of stormwater systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a highly urbanized and flood prone region, Flanders has experienced multiple floods causing significant damage in the past. In response to the floods of 1998 and 2002 the Flemish Environment Agency, responsible for managing 1 400 km of unnavigable rivers, started setting up a real time flood forecasting system in 2003. Currently the system covers almost 2 000 km of unnavigable rivers, for which flood forecasts are accessible online (www.waterinfo.be). The forecasting system comprises more than 1 000 hydrologic and 50 hydrodynamic models which are supplied with radar rainfall, rainfall forecasts and on-site observations. Forecasts for the next 2 days are generated hourly, while 10 day forecasts are generated twice a day. Additionally, twice daily simulations based on percentile rainfall forecasts (from EPS predictions) result in uncertainty bands for the latter. Subsequent flood forecasts use the most recent rainfall predictions and observed parameters at any time while uncertainty on the longer-term is taken into account. The flood forecasting system produces high resolution dynamic flood maps and graphs at about 200 river gauges and more than 3 000 forecast points. A customized emergency response system generates phone calls and text messages to a team of hydrologists initiating a pro-active response to prevent upcoming flood damage. The flood forecasting system of the Flemish Environment Agency is constantly evolving and has proven to be an indispensable tool in flood crisis management. This was clearly the case during the November 2010 floods, when the agency issued a press release 2 days in advance allowing water managers, emergency services and civilians to take measures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computação de tempo real é uma das áreas mais desafiadoras e de maior demanda tecnológica da atualidade. Está diretamente ligada a aplicações que envolvem índices críticos de confiabilidade e segurança. Estas características, inerentes a esta área da computação, vêm contribuindo para o aumento da complexidade dos sistemas tempo real e seu conseqüente desenvolvimento. Isto fez com que mecanismos para facilitar especificação, delimitação e solução de problemas passem a ser itens importantes para tais aplicações. Este trabalho propõe mecanismos para atuarem no desenvolvimento de sistemas de tempo real, com o objetivo de serem empregados como ferramenta de apoio no problema da verificação de presença de inconsistências, que podem vir a ocorrer nos vários modelos gerados partir da notação da linguagem de modelagem gráfica para sistemas de tempo real - UML-RT(Unified Modeling Language for Real Time). Estes mecanismos foram projetados através da construção de um metamodelo dos conceitos presentes nos diagramas de classe, de objetos, de seqüência, de colaboração e de estados. Para construir o metamodelo, utiliza-se a notação do diagrama de classes da UML (Unified Modeling Language). Contudo, por intermédio das representações gráficas do diagrama de classes não é possível descrever toda a semântica presente em tais diagramas. Assim, regras descritas em linguagem de modelagem OCL (Object Constraint Language) são utilizadas como um formalismo adicional ao metamodelo. Com estas descrições em OCL será possível a diminuição das possíveis ambigüidades e inconsistências, além de complementar as limitações impostas pelo caráter gráfico da UML. O metamodelo projetado é mapeado para um modelo Entidade&Relacionamento. A partir deste modelo, são gerados os scripts DDL (Data Definition Language) que serão usados na criação do dicionário de dados, no banco de dados Oracle. As descrições semânticas escritas através de regras em OCL são mapeadas para triggers, que disparam no momento em que o dicionário de dados é manipulado. O MET Editor do SiMOO-RT é a ferramenta diagramática que faz o povoamento dos dados no dicionário de dados. SiMOO-RT é uma ferramenta orientada a objetos para a modelagem, simulação e geração automática de código para sistemas de tempo real.