923 resultados para random forest regression
Resumo:
We report enhanced emission and gain narrowing in Rhodamine 590 perchlorate dye in an aqueous suspension of polystyrene microspheres. A systematic experimental study of the threshold condition for and the gain narrowing of the stimulated emission over a wide range of dye concentrations and scatterer number densities showed several interesting features, even though the transport mean free path far exceeded the system size. The conventional diffusive-reactive approximation to radiative transfer in an inhomogeneously illuminated random amplifying medium, which is valid for a transport mean-free path much smaller than the system size, is clearly inapplicable here. We propose a new probabilistic approach for the present case of dense, random, weak scatterers involving the otherwise rare and ignorable sub-mean-free-path scatterings, now made effective by the high gain in the medium, which is consistent: with experimentally observed features. (C) 1997 Optical Society of America.
Resumo:
Five villages undertaking joint forest management (JFM) were chosen in Uttara Kannada district, Karnataka for assessing regeneration in plantations and nearby natural forests of the village. Species number, stem density, diversity index, similarity in species composition in less disturbed and disturbed forests and plantations in the village were compared. Stem density was low in all the disturbed forests; however, the species number was low in disturbed forests of three villages and high in two villages. Plantations showed lower diversity values compared to the adjacent natural forests. Regeneration in all less disturbed forests was better compared to the disturbed counterparts. Villages were ranked based on number of landless families, per, capita forest available and number of cut stems. Assessment of village forests using ranks indicates that parameters such as per capita availability, cut stems in the forests may determine the success of JFM.
Resumo:
Lantana camara, a shrub of Central and South American origin, has become invasive across dry forests worldwide. The effect of the thicket-forming habit of L. camara as a dispersal and recruitment barrier in a community of native woody seedlings was examined in a 50-ha permanent plot located in the seasonally dry forest of Mudumalai, southern India. Sixty 100-m(2) plots were enumerated for native woody seedlings between 10-100 cm in height. Of these, 30 plots had no L. camara thickets, while the other 30 had dense thickets. The frequency of occurrence and abundance of seedlings were modelled as a function of dispersal mode (mammal, bird or mechanical) and affinities to forest habitats (dry forest, moist forest or ubiquitous) as well as presence or absence of dense L. camara thickets. Furthermore, frequency of occurrence and abundance of individual species were also compared between thickets and no L. camara. At the community level, L. camara density, dispersal mode and forest habitat affinities of species determined both frequency of occurrence and abundance of seedlings, with the abundance of dry-forest mammal-dispersed species and ubiquitous mechanically dispersed species being significantly lower under L. camara thickets. Phyllanthus emblica and Kydia calycina were found to be significantly less abundant under L. camara, whereas most other species were not affected by the presence of thickets. It was inferred that, by affecting the establishment of native tree seedlings, L. camara thickets could eventually alter the community composition of such forests.
Resumo:
The phase diagram of a hard-sphere fluid in the presence of a random pinning potential is studied analytically and numerically. In the analytic work, replicas are introduced for averaging over the quenched disorder, and the hypernetted chain approximation is used to calculate density correlations in the replicated liquid. The freezing transition of the liquid into a nearly crystalline state is studied using a density-functional approach, and the liquid to glass transition is studied using a phenomenological replica symmetry breaking approach. In the numerical work, local minima of a discretized version of the Ramakrishnan-Yussouff free-energy functional are located and the phase diagram in the density-disorder plane is obtained from an analysis of the relative stability of these minima. Both approaches lead to similar results for the phase diagram. The first-order liquid to crystalline solid transition is found to change to a continuous liquid to glass transition as the strength of the disorder is increased above a threshold value.
Resumo:
In this article we consider a finite queue with its arrivals controlled by the random early detection algorithm. This is one of the most prominent congestion avoidance schemes in the Internet routers. The aggregate arrival stream from the population of transmission control protocol sources is locally considered stationary renewal or Markov modulated Poisson process with general packet length distribution. We study the exact dynamics of this queue and provide the stability and the rates of convergence to the stationary distribution and obtain the packet loss probability and the waiting time distribution. Then we extend these results to a two traffic class case with each arrival stream renewal. However, computing the performance indices for this system becomes computationally prohibitive. Thus, in the latter half of the article, we approximate the dynamics of the average queue length process asymptotically via an ordinary differential equation. We estimate the error term via a diffusion approximation. We use these results to obtain approximate transient and stationary performance of the system. Finally, we provide some computational examples to show the accuracy of these approximations.
Resumo:
Given two independent Poisson point processes ©(1);©(2) in Rd, the AB Poisson Boolean model is the graph with points of ©(1) as vertices and with edges between any pair of points for which the intersection of balls of radius 2r centred at these points contains at least one point of ©(2). This is a generalization of the AB percolation model on discrete lattices. We show the existence of percolation for all d ¸ 2 and derive bounds for a critical intensity. We also provide a characterization for this critical intensity when d = 2. To study the connectivity problem, we consider independent Poisson point processes of intensities n and cn in the unit cube. The AB random geometric graph is de¯ned as above but with balls of radius r. We derive a weak law result for the largest nearest neighbour distance and almost sure asymptotic bounds for the connectivity threshold.
Resumo:
This paper introduces a scheme for classification of online handwritten characters based on polynomial regression of the sampled points of the sub-strokes in a character. The segmentation is done based on the velocity profile of the written character and this requires a smoothening of the velocity profile. We propose a novel scheme for smoothening the velocity profile curve and identification of the critical points to segment the character. We also porpose another method for segmentation based on the human eye perception. We then extract two sets of features for recognition of handwritten characters. Each sub-stroke is a simple curve, a part of the character, and is represented by the distance measure of each point from the first point. This forms the first set of feature vector for each character. The second feature vector are the coeficients obtained from the B-splines fitted to the control knots obtained from the segmentation algorithm. The feature vector is fed to the SVM classifier and it indicates an efficiency of 68% using the polynomial regression technique and 74% using the spline fitting method.
Resumo:
We address the problem of local-polynomial modeling of smooth time-varying signals with unknown functional form, in the presence of additive noise. The problem formulation is in the time domain and the polynomial coefficients are estimated in the pointwise minimum mean square error (PMMSE) sense. The choice of the window length for local modeling introduces a bias-variance tradeoff, which we solve optimally by using the intersection-of-confidence-intervals (ICI) technique. The combination of the local polynomial model and the ICI technique gives rise to an adaptive signal model equipped with a time-varying PMMSE-optimal window length whose performance is superior to that obtained by using a fixed window length. We also evaluate the sensitivity of the ICI technique with respect to the confidence interval width. Simulation results on electrocardiogram (ECG) signals show that at 0dB signal-to-noise ratio (SNR), one can achieve about 12dB improvement in SNR. Monte-Carlo performance analysis shows that the performance is comparable to the basic wavelet techniques. For 0 dB SNR, the adaptive window technique yields about 2-3dB higher SNR than wavelet regression techniques and for SNRs greater than 12dB, the wavelet techniques yield about 2dB higher SNR.
Resumo:
Uncertainties in complex dynamic systems play an important role in the prediction of a dynamic response in the mid- and high-frequency ranges. For distributed parameter systems, parametric uncertainties can be represented by random fields leading to stochastic partial differential equations. Over the past two decades, the spectral stochastic finite-element method has been developed to discretize the random fields and solve such problems. On the other hand, for deterministic distributed parameter linear dynamic systems, the spectral finite-element method has been developed to efficiently solve the problem in the frequency domain. In spite of the fact that both approaches use spectral decomposition (one for the random fields and the other for the dynamic displacement fields), very little overlap between them has been reported in literature. In this paper, these two spectral techniques are unified with the aim that the unified approach would outperform any of the spectral methods considered on their own. An exponential autocorrelation function for the random fields, a frequency-dependent stochastic element stiffness, and mass matrices are derived for the axial and bending vibration of rods. Closed-form exact expressions are derived by using the Karhunen-Loève expansion. Numerical examples are given to illustrate the unified spectral approach.
Resumo:
We investigate the spatial search problem on the two-dimensional square lattice, using the Dirac evolution operator discretized according to the staggered lattice fermion formalism. d=2 is the critical dimension for the spatial search problem, where infrared divergence of the evolution operator leads to logarithmic factors in the scaling behavior. As a result, the construction used in our accompanying article [ A. Patel and M. A. Rahaman Phys. Rev. A 82 032330 (2010)] provides an O(√NlnN) algorithm, which is not optimal. The scaling behavior can be improved to O(√NlnN) by cleverly controlling the massless Dirac evolution operator by an ancilla qubit, as proposed by Tulsi Phys. Rev. A 78 012310 (2008). We reinterpret the ancilla control as introduction of an effective mass at the marked vertex, and optimize the proportionality constants of the scaling behavior of the algorithm by numerically tuning the parameters.
Resumo:
We consider a fluid queue in discrete time with random service rate. Such a queue has been used in several recent studies on wireless networks where the packets can be arbitrarily fragmented. We provide conditions on finiteness of moments of stationary delay, its Laplace-Stieltjes transform and various approximations under heavy traffic. Results are extended to the case where the wireless link can transmit in only a few slots during a frame.
Resumo:
In this paper we propose a novel, scalable, clustering based Ordinal Regression formulation, which is an instance of a Second Order Cone Program (SOCP) with one Second Order Cone (SOC) constraint. The main contribution of the paper is a fast algorithm, CB-OR, which solves the proposed formulation more eficiently than general purpose solvers. Another main contribution of the paper is to pose the problem of focused crawling as a large scale Ordinal Regression problem and solve using the proposed CB-OR. Focused crawling is an efficient mechanism for discovering resources of interest on the web. Posing the problem of focused crawling as an Ordinal Regression problem avoids the need for a negative class and topic hierarchy, which are the main drawbacks of the existing focused crawling methods. Experiments on large synthetic and benchmark datasets show the scalability of CB-OR. Experiments also show that the proposed focused crawler outperforms the state-of-the-art.