839 resultados para rainfall-runoff empirical statistical model
Resumo:
Genetic anticipation is defined as a decrease in age of onset or increase in severity as the disorder is transmitted through subsequent generations. Anticipation has been noted in the literature for over a century. Recently, anticipation in several diseases including Huntington's Disease, Myotonic Dystrophy and Fragile X Syndrome were shown to be caused by expansion of triplet repeats. Anticipation effects have also been observed in numerous mental disorders (e.g. Schizophrenia, Bipolar Disorder), cancers (Li-Fraumeni Syndrome, Leukemia) and other complex diseases. ^ Several statistical methods have been applied to determine whether anticipation is a true phenomenon in a particular disorder, including standard statistical tests and newly developed affected parent/affected child pair methods. These methods have been shown to be inappropriate for assessing anticipation for a variety of reasons, including familial correlation and low power. Therefore, we have developed family-based likelihood modeling approaches to model the underlying transmission of the disease gene and penetrance function and hence detect anticipation. These methods can be applied in extended families, thus improving the power to detect anticipation compared with existing methods based only upon parents and children. The first method we have proposed is based on the regressive logistic hazard model. This approach models anticipation by a generational covariate. The second method allows alleles to mutate as they are transmitted from parents to offspring and is appropriate for modeling the known triplet repeat diseases in which the disease alleles can become more deleterious as they are transmitted across generations. ^ To evaluate the new methods, we performed extensive simulation studies for data simulated under different conditions to evaluate the effectiveness of the algorithms to detect genetic anticipation. Results from analysis by the first method yielded empirical power greater than 87% based on the 5% type I error critical value identified in each simulation depending on the method of data generation and current age criteria. Analysis by the second method was not possible due to the current formulation of the software. The application of this method to Huntington's Disease and Li-Fraumeni Syndrome data sets revealed evidence for a generation effect in both cases. ^
Resumo:
Objective. To measure the demand for primary care and its associated factors by building and estimating a demand model of primary care in urban settings.^ Data source. Secondary data from 2005 California Health Interview Survey (CHIS 2005), a population-based random-digit dial telephone survey, conducted by the UCLA Center for Health Policy Research in collaboration with the California Department of Health Services, and the Public Health Institute between July 2005 and April 2006.^ Study design. A literature review was done to specify the demand model by identifying relevant predictors and indicators. CHIS 2005 data was utilized for demand estimation.^ Analytical methods. The probit regression was used to estimate the use/non-use equation and the negative binomial regression was applied to the utilization equation with the non-negative integer dependent variable.^ Results. The model included two equations in which the use/non-use equation explained the probability of making a doctor visit in the past twelve months, and the utilization equation estimated the demand for primary conditional on at least one visit. Among independent variables, wage rate and income did not affect the primary care demand whereas age had a negative effect on demand. People with college and graduate educational level were associated with 1.03 (p < 0.05) and 1.58 (p < 0.01) more visits, respectively, compared to those with no formal education. Insurance was significantly and positively related to the demand for primary care (p < 0.01). Need for care variables exhibited positive effects on demand (p < 0.01). Existence of chronic disease was associated with 0.63 more visits, disability status was associated with 1.05 more visits, and people with poor health status had 4.24 more visits than those with excellent health status. ^ Conclusions. The average probability of visiting doctors in the past twelve months was 85% and the average number of visits was 3.45. The study emphasized the importance of need variables in explaining healthcare utilization, as well as the impact of insurance, employment and education on demand. The two-equation model of decision-making, and the probit and negative binomial regression methods, was a useful approach to demand estimation for primary care in urban settings.^
Resumo:
Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^
Resumo:
The use of coal for fuel in place of oil and natural gas has been increasing in the United States. Typically, users store their reserves of coal outdoors in large piles and rainfall on the coal creates runoffs which may contain materials hazardous to the environment and the public's health. To study this hazard, rainfall on model coal piles was simulated, using deionized water and four coals of varying sulfur content. The simulated surface runoffs were collected during 9 rainfall simulations spaced 15 days apart. The runoffs were analyzed for 13 standard water quality parameters, extracted with organic solvents and then analyzed with capillary column GC/MS, and the extracts were tested for mutagenicity with the Ames Salmonella microsomal assay and for clastogenicity with Chinese hamster ovary cells.^ The runoffs from the high-sulfur coals and the lignite exhibited extremes of pH (acidity), specific conductance, chemical oxygen demand, and total suspended solids; the low-sulfur coal runoffs did not exhibit these extremes. Without treatment, effluents from these high-sulfur coals and lignite would not comply with federal water quality guidelines.^ Most extracts of the simulated surface runoffs contained at least 10 organic compounds including polycyclic aromatic hydrocarbons, their methyl and ethyl homologs, olefins, paraffins, and some terpenes. The concentrations of these compounds were generally less than 50 (mu)g/l in most extracts.^ Some of the extracts were weakly mutagenic and affected both a DNA-repair proficient and deficient Salmonella strain. The addition of S9 decreased the effect significantly. Extracts of runoffs from the low-sulfur coal were not mutagenic.^ All extracts were clastogenic. Extracts of runoffs from the high-sulfur coals were both clastogenic and cytotoxic; those from the low-sulfur coal and the lignite were less clastogenic and not cytotoxic. Clastogenicity occurred with and without S9 activation. Chromosomal lesions included gaps, breaks and exchanges. These data suggest a relationship between the sulfur content of a coal, its mutagenicity and also its clastogenicity.^ The runoffs from actual coal piles should be investigated for possible genotoxic effects in view of the data presented in this study.^
Resumo:
This dataset characterizes the evolution of western African precipitation indicated by marine sediment geochemical records in comparison to transient simulations using CCSM3 global climate model throughout the Last Interglacial (130-115 ka). It contains (1) defined tie-points (age models), newly published stable isotopes of benthic foraminifera and Al/Si log-ratios of eight marine sediment cores from the western African margin and (2) annual and seasonal rainfall anomalies (relative to pre-industrial values) for six characteristic latitudinal bands in western Africa simulated by CCSM3 (two transient simulations: one non-accelerated and one accelerated experiment).
Resumo:
EOT11a is a global (E)mpirical (O)cean (T)ide model derived in 2011 by residual analysis of multi-mission satellite (a)ltimeter data. EOT11a includes amplitudes and phases of the main astronomical tides M2, S2, N2, K2, 2N2, O1, K1, P2, and Q1, the non-linear constituent M4, the long period tides Mm and Mf, and the radiational tide S1. Ocean tides as well as loading tides are provided. EOT11a was computed by means of residual tidal analysis of multi-mission altimeter data from TOPEX/Poseidon, ERS-2, ENVISAT, and Jason-1/2, as far as acquired between September 1992 and April 2010. The resolution of 7.5'x7.5' is identical with FES2004 which was used as reference model for the residual tide analysis. The development of EOT11a was funded by the Deutsche Forschungsgemeinschaft (DFG) under grant BO1228/6-2.
Resumo:
Research on the impact that work instability has on workers has the limitation of assess the relations among different variables separately, without examining the possible mediation relationships that can exists between them. The aim of this article is to test a conceptual model of the mediating relations between the uneasiness due to work instability and the psychological impact, in the framework of interactive stress theory, conducting a Path Analysis. 191 workers participated on the study, with a mean age of 31 years-old (SD = 11). Results showed that the proposed model didn't fit to the data. Alternative models were explored, consistent with the original conceptual model and the empiric evidence. A new causal model is proposed, where Uneasiness due to Work Instability as an independent variable, Personal Strain and Personal Resources as intervenient variables, and Anger, Hopelessness, and Satisfaction as dependent ones. The theoretical and empirical importance of the resulting model is discussed.
Resumo:
Research on the impact that work instability has on workers has the limitation of assess the relations among different variables separately, without examining the possible mediation relationships that can exists between them. The aim of this article is to test a conceptual model of the mediating relations between the uneasiness due to work instability and the psychological impact, in the framework of interactive stress theory, conducting a Path Analysis. 191 workers participated on the study, with a mean age of 31 years-old (SD = 11). Results showed that the proposed model didn't fit to the data. Alternative models were explored, consistent with the original conceptual model and the empiric evidence. A new causal model is proposed, where Uneasiness due to Work Instability as an independent variable, Personal Strain and Personal Resources as intervenient variables, and Anger, Hopelessness, and Satisfaction as dependent ones. The theoretical and empirical importance of the resulting model is discussed.
Resumo:
Research on the impact that work instability has on workers has the limitation of assess the relations among different variables separately, without examining the possible mediation relationships that can exists between them. The aim of this article is to test a conceptual model of the mediating relations between the uneasiness due to work instability and the psychological impact, in the framework of interactive stress theory, conducting a Path Analysis. 191 workers participated on the study, with a mean age of 31 years-old (SD = 11). Results showed that the proposed model didn't fit to the data. Alternative models were explored, consistent with the original conceptual model and the empiric evidence. A new causal model is proposed, where Uneasiness due to Work Instability as an independent variable, Personal Strain and Personal Resources as intervenient variables, and Anger, Hopelessness, and Satisfaction as dependent ones. The theoretical and empirical importance of the resulting model is discussed.
Resumo:
The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due to climate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate (Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem.