934 resultados para pulse width modulation inverters
Resumo:
In designing and developing various biomaterials, the influence of substrate properties, like surface topography, stiffness and wettability on the cell functionality has been investigated widely. However, such study to probe into the influence of the substrate conductivity on cell fate processes is rather limited. In order to address this issue, spark plasma sintered HA-CaTiO3 (Hydroxyapatite-Calcium titanate) has been used as a model material system to showcase the effect of varying conductivity on cell functionality. Being electroactive in nature, mouse myoblast cells (C2C12) were selected as a model cell line in this study. It was inferred that myoblast adhesion/growth systematically increases with substrate conductivity due to CaTiO3 addition to HA. Importantly, parallel arrangement of myoblast cells on higher CaTiO3 containing substrates indicate that self-adjustable cell patterning can be achieved on conductive biomaterials. Furthermore, enhanced myoblast assembly and myotube formation were recorded after 5 days of serum starvation. Overall, the present study conclusively establishes the positive impact of the substrate conductivity towards cell proliferation and differentiation as well as confirms the efficacy of HA-CaTiO3 biocomposites as conductive platforms to facilitate the growth, orientation and fusion of myoblasts, even when cultured in the absence of external electric field.
Resumo:
Recent experimental measurements of the distribution P(w) of transverse chain fluctuations w in concentrated solutions of F-actin filaments B. Wang, J Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010); J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchgessner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)] are shown to be well-fit to an expression derived from a model of the conformations of a single harmonically confined weakly bendable rod. The calculation of P(w) is carried out essentially exactly within a path integral approach that was originally applied to the study of one-dimensional randomly growing interfaces. Our results are generally as successful in reproducing experimental trends as earlier approximate results obtained from more elaborate many-chain treatments of the confining tube potential.
Resumo:
We report a blood pressure evaluation methodology by recording the radial arterial pulse waveform in real time using a fiber Bragg grating pulse device (FBGPD). Here, the pressure responses of the arterial pulse in the form of beat-to-beat pulse amplitude and arterial diametrical variations are monitored. Particularly, the unique signatures of pulse pressure variations have been recorded in the arterial pulse waveform, which indicate the systolic and diastolic blood pressure while the patient is subjected to the sphygmomanometric blood pressure examination. The proposed method of blood pressure evaluation using FBGPD has been validated with the auscultatory method of detecting the acoustic pulses (Korotkoff sounds) by an electronic stethoscope. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
The design of modulation schemes for the physical layer network-coded two-way relaying scenario is considered with a protocol which employs two phases: multiple access (MA) phase and broadcast (BC) phase. It was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of MA interference which occurs at the relay during the MA phase and all these network coding maps should satisfy a requirement called the exclusive law. We show that every network coding map that satisfies the exclusive law is representable by a Latin Square and conversely, that this relationship can be used to get the network coding maps satisfying the exclusive law. The channel fade states for which the minimum distance of the effective constellation at the relay become zero are referred to as the singular fade states. For M - PSK modulation (M any power of 2), it is shown that there are (M-2/4 - M/2 + 1) M singular fade states. Also, it is shown that the constraints which the network coding maps should satisfy so that the harmful effects of the singular fade states are removed, can be viewed equivalently as partially filled Latin Squares (PFLS). The problem of finding all the required maps is reduced to finding a small set of maps for M - PSK constellations (any power of 2), obtained by the completion of PFLS. Even though the completability of M x M PFLS using M symbols is an open problem, specific cases where such a completion is always possible are identified and explicit construction procedures are provided. Having obtained the network coding maps, the set of all possible channel realizations (the complex plane) is quantized into a finite number of regions, with a specific network coding map chosen in a particular region. It is shown that the complex plane can be partitioned into two regions: a region in which any network coding map which satisfies the exclusive law gives the same best performance and a region in which the choice of the network coding map affects the performance. The quantization thus obtained analytically, leads to the same as the one obtained using computer search for M = 4-PSK signal set by Koike-Akino et al., when specialized for Simulation results show that the proposed scheme performs better than the conventional exclusive-OR (XOR) network coding and in some cases outperforms the scheme proposed by Koike-Akino et al.
Resumo:
Recent experimental measurements of the distribution P(w) of transverse chain fluctuations w in concentrated solutions of F-actin filaments B. Wang, J Guan, S. M. Anthony, S. C. Bae, K. S. Schweizer, and S. Granick, Phys. Rev. Lett. 104, 118301 (2010); J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchgessner, B. Hoffmann, R. Merkel, and M. Giesen, Phys. Rev. Lett. 105, 037801 (2010)] are shown to be well-fit to an expression derived from a model of the conformations of a single harmonically confined weakly bendable rod. The calculation of P(w) is carried out essentially exactly within a path integral approach that was originally applied to the study of one-dimensional randomly growing interfaces. Our results are generally as successful in reproducing experimental trends as earlier approximate results obtained from more elaborate many-chain treatments of the confining tube potential. (C) 2013 AIP Publishing LLC.
Resumo:
For transmission over the two-user Gaussian Multiple Access Channel with fading and finite constellation at the inputs, we propose a scheme which uses only quantized knowledge of fade state at users with the feedback overhead being nominal. One of the users rotates its constellation without varying the transmit power to adapt to the existing channel conditions, in order to meet certain pre-determined minimum Euclidean distance requirement in the equivalent constellation at the destination. The optimal modulation scheme has been described for the case when both the users use symmetric M-PSK constellations at the input, where M = 2λ, λ being a positive integer. The strategy has been illustrated by considering examples where both the users use QPSK signal set at the input. It is shown that the proposed scheme has considerable better error performance compared to the conventional non-adaptive scheme, at the cost of a feedback overhead of just [log2 (M2/8 - M/4 + 2)] + 1 bits, for the M-PSK case.
Resumo:
Generalized spatial modulation (GSM) is a relatively new modulation scheme for multi-antenna wireless communications. It is quite attractive because of its ability to work with less number of transmit RF chains compared to traditional spatial multiplexing (V-BLAST system). In this paper, we show that, by using an optimum combination of number of transmit antennas (N-t) and number of transmit RF chains (N-rf), GSM can achieve better throughput and/or bit error rate (BER) than spatial multiplexing. First, we quantify the percentage savings in the number of transmit RF chains as well as the percentage increase in the rate achieved in GSM compared to spatial multiplexing; 18.75% savings in number of RF chains and 9.375% increase in rate are possible with 16 transmit antennas and 4-QAM modulation. A bottleneck, however, is the complexity of maximum-likelihood (ML) detection of GSM signals, particularly in large MIMO systems where the number of antennas is large. We address this detection complexity issue next. Specifically, we propose a Gibbs sampling based algorithm suited to detect GSM signals. The proposed algorithm yields impressive BER performance and complexity results. For the same spectral efficiency and number of transmit RF chains, GSM with the proposed detection algorithm achieves better performance than spatial multiplexing with ML detection.
Resumo:
The nature of the pre-morphotropic phase boundary (MPB) cubic-like state in the lead-free piezoelectric ceramics (1-x)Na1/2Bi1/2TiO3-(x)BaTiO3 at x similar to 0.06 has been examined in detail by electric field and temperature dependent neutron diffraction, x-ray diffraction, dielectric and ferroelectric characterization. The superlattice reflections in the neutron diffraction patterns cannot be explained with the tetragonal P4bm and the rhombohedral (R3c) phase coexistence model. The cubic like state is rather a result of long ranged modulated complex octahedral tilt. This modulated structure exhibits anomalously large dielectric dispersion. The modulated structure transforms to a MPB state on poling. The field-stabilized MPB state is destroyed and the modulated structure is restored on heating the poled specimen above the Vogel-Fulcher freezing temperature. The results show the predominant role of competing octahedral tilts in determining the nature of structural and polar states in Na1/2Bi1/2TiO3-based ferroelectrics. (C) 2013 AIP Publishing LLC.
Resumo:
Grid-connected inverters require a third-order LCL filter to meet standards such as the IEEE Std. 519-1992 while being compact and cost-effective. LCL filter introduces resonance, which needs to be damped through active or passive methods. Passive damping schemes have less control complexity and are more reliable. This study explores the split-capacitor resistive-inductive (SC-RL) passive damping scheme. The SC-RL damped LCL filter is modelled using state space approach. Using this model, the power loss and damping are analysed. Based on the analysis, the SC-RL scheme is shown to have lower losses than other simpler passive damping methods. This makes the SC-RL scheme suitable for high power applications. A method for component selection that minimises the power loss in the damping resistors while keeping the system well damped is proposed. The design selection takes into account the influence of switching frequency, resonance frequency and the choice of inductance and capacitance values of the filter on the damping component selection. The use of normalised parameters makes it suitable for a wide range of design applications. Analytical results show the losses and quality factor to be in the range of 0.05-0.1% and 2.0-2.5, respectively, which are validated experimentally.
Resumo:
Responses of redox regulatory system to long-term survival (> 18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 A degrees C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.
Resumo:
In this Letter, we present a non-contact method of controlling and monitoring photomechanical actuation in carbon nanotubes (CNT) by exposing it to ultra-violet radiation at different pulse rates (10 to 200 Hz). This is accomplished by imparting a reversible photo induced strain (5-330 mu epsilon) on CNT coated fibre Bragg gratings; CNT undergoes an internal reversible structural change due to cyclic photon absorption that leads to the development of mechanical strain, which in turn allows reversible switching of the Bragg wavelength. The results also reveal an interesting pulse rate dependent rise and fall times of photomechanical actuation in CNT. (C) 2014 AIP Publishing LLC.
Resumo:
The thermoacoustic prime mover (TAPM) has gained considerable attention as a pressure wave generator to drive pulse tube refrigerator (PTR) due to no moving parts, reasonable efficiency, use of environmental friendly working fluids etc. To drive PTCs, lower frequencies (f) with larger pressure amplitudes (Delta P) are essential, which are affected by geometric and operating parameters of TAPM as well as working fluids. For driving PTRs, a twin standing wave TAPM is built and studied by using different working fluids such as helium, argon, nitrogen and their binary mixtures. Simulation results of DeltaEc are compared with experimental data wherever possible. DeltaEc predicts slightly increased resonance frequencies, but gives larger Delta P and lower temperature difference Delta T across stack. High mass number working fluid leads to lower frequency with larger Delta P, but higher Delta T. Studies indicate that the binary gas mixture of right composition with lower Delta T can be arrived at to drive TAPM of given geometry. (C) 2013 Elsevier Ltd and IIR. All rights reserved.
Resumo:
The following paper presents a Powerline Communication (PLC) Method for Single Phase interfaced inverters in domestic microgrids. The PLC method is based on the injection of a repeating sequence of a specific harmonic, which is then modulated on the fundamental component of the grid current supplied by the inverters to the microgrid. The power flow and information exchange are simultaneously accomplished by the grid interacting inverters based on current programmed vector control, hence there is no need for dedicated hardware. Simulation results have been shown for inter-inverter communication under different operating conditions to propose the viability. These simulations have been experimentally validated and the corresponding results have also been presented in the paper.
Resumo:
We use a dual gated device structure to introduce a gate-tuneable periodic potential in a GaAs/AlGaAs two dimensional electron gas (2DEG). Using only a suitable choice of gate voltages we can controllably alter the potential landscape of the bare 2DEG, inducing either a periodic array of antidots or quantum dots. Antidots are artificial scattering centers, and therefore allow for a study of electron dynamics. In particular, we show that the thermovoltage of an antidot lattice is particularly sensitive to the relative positions of the Fermi level and the antidot potential. A quantum dot lattice, on the other hand, provides the opportunity to study correlated electron physics. We find that its current-voltage characteristics display a voltage threshold, as well as a power law scaling, indicative of collective Coulomb blockade in a disordered background.
Resumo:
Using a recently developed strong-coupling method, we present a comprehensive theory for doublon production processes in modulation spectroscopy of a three-dimensional system of ultracold fermionic atoms in an optical lattice with a trap. The theoretical predictions compare well to the experimental time traces of doublon production. For experimentally feasible conditions, we provide a quantitative prediction for the presence of a nonlinear ``two-photon'' excitation at strong modulation amplitudes.