918 resultados para production of subjectivity
Resumo:
Germanate glasses are of interest for optoelectronic applications because they combine high mechanical strength, high chemical durability and temperature stability with a large transmission window (400 to 4500 nm) and high refractive index (2.0). GeO2-PbO-Bi2O3 glasses doped with Y-b(3+) were fabricated by melting powders in a crucible and then pouring them in a brass mold. Energy Dispersive Spectroscopy showed that the glass composition has a high spatial uniformity and that the Yb concentration in the solid sample is proportional to the Yb concentration in the melt, what was confirmed by absorption measurements. Intense blue emission at 507 nm was observed, corresponding to half of the wavelength of the near infrared region (NIR) emission; besides, a decay lifetime of 0.25 ms was measured and this corresponds to half of the decay lifetime in the infrared region; these are very strong indications of the presence of blue cooperative luminescence. Larger targets have been produced to be sputtered, resulting in thin films for three dimensional (3D) display and waveguide applications. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The production of extracellular alkaline proteases from Aspergillus clavatus was evaluated in a culture filtrate medium, with different carbon and nitrogen sources. The fungus was cultivated at three different temperatures during 10 days. The proteolytic activity was determined on casein pH 9.5 at 37degreesC. The highest alkaline proteolytic activity (38 U/ml) was verified for culture medium containing glucose and casein at 1% (w/v) as substrates, obtained from cultures developed at 25degreesC for 6 days. Cultures developed in Vogel medium with glucose at 2% (w/v) and 0.2% (w/v) NH4NO3 showed higher proteolytic activity (27 U/ml) when compared to the cultures with 1% of the same sugar. Optimum temperature was 40degreesC and the half-lives at 40, 45 and 50degreesC were 90, 25 and 18 min, respectively. Optimum pH of enzymatic activity was 9.5 and the enzyme was stable from pH 6.0 to 12.0.
Resumo:
This work describes the application of partial least squares (PLS) regression to variables that represent the oxidation data of several types of secondary metabolite isolated from the family Asteraceae. The oxidation states were calculated for each carbon atom of the involved compounds after these had been matched with their biogenetic precursor. The states of oxidation variations were named oxidation steps. This methodology represents a new approach to inspect the oxidative changes in taxa. Partial least square (PLS) regression was used to inspect the relationships among terpenoids, cournarins, polyacetylenes, and flavonoids from a data base containing approximately 27,000 botanical entries. The results show an interdependence between the average oxidation states of each class of secondary metabolite at tribe and sub tribe levels.
Resumo:
The in vitro gas production of four single roughages and their paired combinations (1:1 on dry matter basis) were evaluated. Two roughage samples (100 mg) per treatment were fermented with ruminal fluid during a 48 h incubation period. Total 48 h gas volumes of fermentation dry matter (DM), neutral detergent fiber (NDF) and soluble compounds in neutral detergent (NDS) were for sugarcane = 16.8, 11.2, 6.9 mL; sugarcane + corn silage = 20.1, 12.6, 9.1 mL; sugarcane + 60-day elephantgrass = 16.5, 17.6 mL; sugarcane + 180-day elephantgrass = 13.8, 8.2, 5.9 mL; corn silage = 18.8, 16.8, 4.7 mL; corn silage + 60-day elephantgrass = 16.3, 15.4, 2.4 mL; corn silage + 180-day elephantgrass = 16.1, 11.8, 4.2 mL; 60-day elephantgrass = 16.9, 19.0 mL and 180-day elephantgrass = fermented 10.7, 12.2 mL, respectively. The NDS gas production was not possible to estimate for sugarcane + 60-day elephantgrass, 60-day elephantgrass and 180-day elephantgrass. The present data shows that the curves subtraction method can be an option to evaluate the contribution of the soluble fractions in roughages to digestion kinetics. However, this method underestimates the NDS gas contribution when roughages are low in crude protein and soluble carbohydrates. It is advisable to directly apply the two-compartmental mathematical model to the digestion curves for roughage DM, when determining the NDS gas volume and the digestion rate. This method is more straightforward and accurate when compared to the curve subtraction method. Non-structural carbohydrates combined with fiber and protein promoted a positive associative effect in sugarcane + corn silage (50:50) mixture. Therefore, it can be concluded that the soluble fraction of roughages greatly contributes to gas production. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was evaluating the performance of several cultivars of green corn for consumption 'in natura' in different planting dates. The first planting date was on May 26th, and the others, every 40 days. The hybrids (treatments) were: AG-1051, Agroeste 1567, BM-3061, Prezoto-32D10, PL-6880, BX-1382 and GNZ-2004. The following characteristics were evaluated: production, commercial ears weight without husk, commercial ears number, commercial ears diameter and length, male flowering, plant height and height of ear corn insertion. The cultivars AG1051, Agroeste 1567 and BM 3061 presented the best results compared to the others and they should be used in green corn production for ` in natura' consumption in Passos County, MG.
Resumo:
The soil of the Paraiba, in generality, are acid and with low levels of available match, seriously limiting the income of the plants. A research in vegetation house was lead, with the objective to evaluate doses of calcareous soil and match in the culture of ricinus. The treatments had been composites for five levels of match: 0.0; 80; 160; 240 and 360 kg ha(-1) of P(2)O(5) and four dosis of calcareous rock: 0.0; 2.5; 3.5 and 4.5 t ha(-1) in experimental delineation of blocks casualized with 4 factorial project x 3 (four levels of match and three doses of calcareous soil) more two treatments you add zero of match (0.0 P(2)O(5): 2,5 t ha(-1) of calcareous soil) and calcareous soil zero (240 P(2)O(5): 0.0 t ha(-1) of calcareous soil), with three repetitions. The calcareous soil reduced the acidity of the ground and effect of the application of the match (>= 80 kg ha(-1) of P(2)O(5)) in the presence of the collagen (>= 2.5 t ha(-1) of CaCO(3)) with of the calcareous soil (>= 2.5 t ha(-1) of CaCO(3)) in the presence of the match was not verified well (>= 80 kg ha(-1) of P(2)O(5)). The match applied in the absence of the calcareous soil was limited to the income of the culture of what the calcareous soil in the absence of the match.
Resumo:
Castor (Ricinus communis L.) is one of the oldest cultivated crops, but currently it represents only 0.15% of the vegetable oil produced in the world. Castor oil is of continuing importance to the global specialty chemical industry because it is the only commercial source of a hydroxylated fatty acid. Castor also has tremendous future potential as an industrial oilseed crop because of its high seed oil content (more than 480 g kg(-1)), unique fatty acid composition (900 g kg(-1) of ricinoleic acid), potentially high oil yields (1250-2500 L ha(-1)), and ability to be grown under drought and saline conditions. The scientific literature on castor has been generated by a relatively small global community of researchers over the past century. Much of this work was published in dozens of languages in journals that are not easily accessible to the scientific community. This review was conducted to provide a compilation of the most relevant historic research information and define the tremendous future potential of castor. The article was prepared by a group of 22 scientists from 16 institutions and eight countries. Topics discussed in this review include: (i) germplasm, genetics, breeding, biotic stresses, genome sequencing, and biotechnology; (ii) agronomic production practices, diseases, and abiotic stresses; (iii) management and reduction of toxins for the use of castor meal as both an animal feed and an organic fertilizer; (iv) future industrial uses of castor including renewable fuels; (v) world production, consumption, and prices; and (vi) potential and challenges for increased castor production.