962 resultados para predicting and alert system
Resumo:
It has been well documented that traffic accidents that can be avoided occur when the motorists miss or ignore traffic signs. With the attention of drivers getting diverted due to distractions like cell phone conversations, missing traffic signs has become more prevalent. Also, poor weather and other unfriendly driving conditions sometimes makes the motorists not to be alert all the time and see every traffic sign on the road. Besides, most cars do not have any form of traffic assistance. Because of heavy traffic and proliferation of traffic signs on the roads, there is a need for a system that assists the driver not to miss a traffic sign to reduce the probability of an accident. Since visual information is critical for driving, processed video signals from cameras have been chosen to assist drivers. These inexpensive cameras can be easily mounted on the automobile. The objective of the present investigation and the traffic system development is to recognize the traffic signs electronically and alert drivers. For the case study and the system development, five important and critical traffic signs have been selected. They are: STOP, NO ENTER, NO RIGHT TURN, NO LEFT TURN, and YIELD. The system was evaluated processing still pictures taken from the public roads, and the recognition results were presented in an analysis table to indicate the correct identifications and the false ones. The system reached the acceptable recognition rate of 80% for all five traffic signs. The processing rate was about three seconds. The capabilities of MATLAB, VLSI design platforms and coding have been used to generate a visual warning to complement the visual driver support system with a Field Programmable Gate Array (FPGA) on a XUP Virtex-II Pro Development System.
Resumo:
With the recent explosion in the complexity and amount of digital multimedia data, there has been a huge impact on the operations of various organizations in distinct areas, such as government services, education, medical care, business, entertainment, etc. To satisfy the growing demand of multimedia data management systems, an integrated framework called DIMUSE is proposed and deployed for distributed multimedia applications to offer a full scope of multimedia related tools and provide appealing experiences for the users. This research mainly focuses on video database modeling and retrieval by addressing a set of core challenges. First, a comprehensive multimedia database modeling mechanism called Hierarchical Markov Model Mediator (HMMM) is proposed to model high dimensional media data including video objects, low-level visual/audio features, as well as historical access patterns and frequencies. The associated retrieval and ranking algorithms are designed to support not only the general queries, but also the complicated temporal event pattern queries. Second, system training and learning methodologies are incorporated such that user interests are mined efficiently to improve the retrieval performance. Third, video clustering techniques are proposed to continuously increase the searching speed and accuracy by architecting a more efficient multimedia database structure. A distributed video management and retrieval system is designed and implemented to demonstrate the overall performance. The proposed approach is further customized for a mobile-based video retrieval system to solve the perception subjectivity issue by considering individual user's profile. Moreover, to deal with security and privacy issues and concerns in distributed multimedia applications, DIMUSE also incorporates a practical framework called SMARXO, which supports multilevel multimedia security control. SMARXO efficiently combines role-based access control (RBAC), XML and object-relational database management system (ORDBMS) to achieve the target of proficient security control. A distributed multimedia management system named DMMManager (Distributed MultiMedia Manager) is developed with the proposed framework DEMUR; to support multimedia capturing, analysis, retrieval, authoring and presentation in one single framework.
Resumo:
This talk explores how the runtime system and operating system can leverage metrics that express the significance and resilience of application components in order to reduce the energy footprint of parallel applications. We will explore in particular how software can tolerate and indeed exploit higher error rates in future processors and memory technologies that may operate outside their safe margins.
Resumo:
[EN]Facial image processing is becoming widespread in human-computer applications, despite its complexity. High-level processes such as face recognition or gender determination rely on low-level routines that must e ectively detect and normalize the faces that appear in the input image. In this paper, a face detection and normalization system is described. The approach taken is based on a cascade of fast, weak classi ers that together try to determine whether a frontal face is present in the image.
Resumo:
During the development of a new treatment space for the UK emergency ambulance participatory observations with front-line clinicians revealed the need for an integrated patient monitoring, communication and navigation system. The research identified the different information touch-points and requirements through modes of use analysis, day-in-the-life study and simulation workshops with clinicians. Emergency scenario and role-play with paramedics identified 5 distinct ambulance modes of use. Information flow diagrams were created and checked by paramedics and digital User Interface (UI) wireframes were developed and evaluated by clinicians during clinical evaluations. Feedback from clinicians defined UI design specification further leading to a final design proposal. This research was a further development from the 2007 EPSRC funded “Smart Pods” project. The resulting interactive prototype was co-designed in collaboration with ambulance crews and provides a vision of what could be achieved by integrating well-proven IT technologies and protocols into a package relevant in the emergency medicine field. The system has been reviewed by over 40 ambulance crews and is part of a newly co-designed ambulance treatment space.
Resumo:
In spite of impressive rates of economic growth, the quality of the labor force’s human capital is considered a major challenge for sustaining medium term economic growth in Peru. This note reviews the skills of the Peruvian labor force, and the status of the continuous education and training system. Based on such an assessment and on learnings from international best practices, it proposes a system of continuous education and training that draws from international best practices, but that addresses local capacity and institutional issues.
Resumo:
A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.
Resumo:
Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of smallscale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socioeconomic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity. © Author(s) 2009.
Resumo:
O sedimento representa um importante depósito de contaminantes e uma fonte de contaminação para a cadeia alimentar aquática. Testes de toxicidade usando anfípodos como organismos-teste são empregados para avaliar sedimentos marinhos e estuarinos, juntamente com análises químicas. O presente trabalho tem como objetivo avaliar a qualidade de sedimentos de seis estações situadas no Sistema Estuarino e Portuário de Santos e São Vicente (São Paulo-Brasil), usando testes de toxicidade aguda com sedimento com anfípodos (Tiburonella viscana) e análises químicas de metais, PCB, e PAH. Outros parâmetros do sedimento foram analisados, como carbono orgânico e granulometria. Foram observados níveis de contaminação mais altos na porção interna do estuário onde se localiza o Porto de Santos e a zona industrial. Os testes de toxicidade mostraram resultados adversos significantes para a maioria das amostras testadas, e os sedimentos da porção interna do estuário apresentaram toxicidade mais alta. As análises de componentes principais indicaram uma relação forte entre contaminação do sedimento e toxicidade. As correlações positivas destes fatores nas amostras estudadas foram usadas para estabelecer os pesos das concentrações químicas que estão associadas com os efeitos adversos. Tais análises permitiram estimar valores limiares de efeito para a contaminação de sedimento através de análises multivariadas, identificando os contaminantes associados com o efeito biológico. Estes valores sugeridos são: Cu, 69.0; Pb, 17.4; Zn, 73.3(mg.kg-1); PAHs, 0.5 (mg.kg-1) e PCBs, 0.1 (µg.kg-1).
Resumo:
Queueing systems constitute a central tool in modeling and performance analysis. These types of systems are in our everyday life activities, and the theory of queueing systems was developed to provide models for forecasting behaviors of systems subject to random demand. The practical and useful applications of the discrete-time queues make the researchers to con- tinue making an e ort in analyzing this type of models. Thus the present contribution relates to a discrete-time Geo/G/1 queue in which some messages may need a second service time in addition to the rst essential service. In day-to-day life, there are numerous examples of queueing situations in general, for example, in manufacturing processes, telecommunication, home automation, etc, but in this paper a particular application is the use of video surveil- lance with intrusion recognition where all the arriving messages require the main service and only some may require the subsidiary service provided by the server with di erent types of strategies. We carry out a thorough study of the model, deriving analytical results for the stationary distribution. The generating functions of the number of messages in the queue and in the system are obtained. The generating functions of the busy period as well as the sojourn times of a message in the server, the queue and the system are also provided.
Resumo:
To tackle the challenges at circuit level and system level VLSI and embedded system design, this dissertation proposes various novel algorithms to explore the efficient solutions. At the circuit level, a new reliability-driven minimum cost Steiner routing and layer assignment scheme is proposed, and the first transceiver insertion algorithmic framework for the optical interconnect is proposed. At the system level, a reliability-driven task scheduling scheme for multiprocessor real-time embedded systems, which optimizes system energy consumption under stochastic fault occurrences, is proposed. The embedded system design is also widely used in the smart home area for improving health, wellbeing and quality of life. The proposed scheduling scheme for multiprocessor embedded systems is hence extended to handle the energy consumption scheduling issues for smart homes. The extended scheme can arrange the household appliances for operation to minimize monetary expense of a customer based on the time-varying pricing model.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and evaporation (λEE) flux components of the terrestrial latent heat flux (λE), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy) seasons where λET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between λET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.
Resumo:
Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (?ET) and evaporation (?EE) flux components of the terrestrial latent heat flux (?E), which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR) into an integrated framework of the Penman?Monteith and Shuttleworth?Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on ?ET and ?EE over multiple plant functional types (PFTs) in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia) eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, ?ET, and atmospheric vapor pressure deficit (DA), without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on ?ET during the wet (rainy) seasons where ?ET becomes predominantly radiation driven and net radiation (RN) determines 75 to 80?% of the variances of ?ET. However, biophysical control on ?ET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65?% of the variances of ?ET, and indicates ?ET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy?atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to surface wetness variability. Our results reveal the occurrence of a significant hysteresis between ?ET and gC during the dry season for the pasture sites, which is attributed to relatively low soil water availability as compared to the rainforests, likely due to differences in rooting depth between the two systems. Evaporation was significantly influenced by gA for all the PFTs and across all wetness conditions. Our analytical framework logically captures the responses of gC and gA to changes in atmospheric radiation, DA, and surface radiometric temperature, and thus appears to be promising for the improvement of existing land?surface?atmosphere exchange parameterizations across a range of spatial scales.
Resumo:
Introduction: Recently, the American Association of Gynecologic Laparoscopists proposed a new classification and scoring system with the specific aim to assess surgical complexity. This study sought to assess if a higher AAGL score correlates with an increased risk of peri-operative complications in women submitted to surgery for endometriosis. Methods: This is a retrospective cohort study conducted in a third level referral center. We collected data from women with endometriosis submitted to complete surgical removal of endometriosis from January 2019 to December 2021. ENZIAN, r-ASRM classifications and AAGL total score was calculated for each patient. Population was divided in two groups according to the occurrence or not of at least one peri-operative complication. Our primary outcome was to evaluate the correlation between AAGL score and occurrence of complications. Results: During the study period we analyzed data from 282 eligible patients. Among them, 80 (28.4%) experienced peri-operative complications. No statistically significant difference was found between the two groups in terms of baseline characteristics, except for pre-operative hemoglobin (Hb), which was lower in patients with complications (p=0.001). Surgical variables associated with the occurrence of complications were recto-sigmoid surgery (p=0.003), ileocecal resection (0.034), and longer operative time (p=0.007). Furthermore, a higher ENZIAN B score (p=0.006), AAGL score (p=0.045) and stage (p=0.022) were found in the group of patients with complications. The multivariate analysis only confirmed the significant association between the occurrence of peri-operative complications and lower pre-operative Hb level (OR 0.74; 95% CI, 0.59 - 0.94; p=0.014), longer operative time (OR 1.00; 95% CI, 1.00 – 1.01; p=0.013), recto-sigmoid surgery - especially discoid resection (OR 8.73; 95% CI, 2.18 – 35; p=0.016) and ENZIAN B3 (OR 3.62; 95% CI, 1.46 – 8.99; p= 0.006). Conclusion: According to our findings, high AAGL scores or stages do not seem to increase the risk of peri-operative complications.
Resumo:
In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.