906 resultados para powders
Resumo:
Technology always advances and thus the device miniaturization and improved performance, besides multifunctionality, they become extremely necessary. A wave of research on the area tends to grow in number and importance in today's market, it is necessary to search for new materials, new applicability of the existing ones and new processes for increasingly cheaper costs. Dielectric materials are considered a key element in this sector being the main electrical properties its high dielectric constant and low dielectric loss. The Polymeric Precursor Method appears as a good alternative because is a low cost, simple process with controlled stoichiometry. In this method, two steps were performed. In a first step, the precursor solution was decomposed into powders and in a second step the precursor solution was converted in thin films. In this work, was used the polymeric precursor methods to get thin films where they were heat treated and characterized by XRD, SEM and AFM. We have obtained Bi3NbO7 thin films with good homogeneity and uniform distribution of grains were noted. We observed that the best condition to obtain the tetragonal phase is annealing the film at high temperatures for a longer soaking time and with excess of bismuth. Several oxides electrodes were evaluated aiming to obtain textured dielectric thin films
Resumo:
Several alloys present the shape memory effect and among them, the equiatomic NiTi alloy, nitinol, is the most important one. It is usually used in several engineering applications and also in biomedical devices, in the fabrication of orthodontic wire, stents and Judet staples. Although a considerable amount of these biomedical devices is utilized in Brazil and a fraction of it is already made here, all nitinol used is bought abroad. Thus, it is important to develop the necessary know-how to fabricate NiTi wire and sheet. It would mean less importation with job creation and wealth generation for the country. In this work nitinol was obtained powder metallurgy from elemental powders of Ti and Ni using uniaxial compression and uniaxial compression followed by isostatic compression. The final densities achieved were determined by the Archimedes method. The precipitation of intermetallic secondary phases was studied and the samples were characterized by metallographic analysis, optical microscopy and X-ray diffraction. Results indicated that 50 hours sintering route showed a low amount of intermetallics, and no trace of unreacted powder. XRD and metallography at room temperature indicated B19’ as the predominant phase, which corresponds to martensite. Although density results showed little dispersion, the most dense sample was compacted under uniaxial compression and presented 4.8 g/cm3, corresponding to 20.84% porosity. Density variation was considered normal to the measurement process and independent of the compaction mode
Resumo:
The need for development of new materials is a natural process in the companies’ technological point of view, seeking improvements in materials and processes. Specifically, among the materials, ceramic exhibit valuable properties, especially the covalent ceramics which have excellent properties for applications which requires the abrasion resistance, hardness, high temperatures, resistence, etc. being a material that has applications in several areas. Most studies are related to improvement of properties, specially fracture toughness that allows the expansion of its application. Among the most promising ceramic materials are silicon nitride (Si3N4) which has excellent properties. The goal of this work was the development and caracterization of Si3N4-based ceramics, doped with yttrium oxide (Y2O3), rar earth concentrate (CTR2O3) and cerium oxide (CeO2) in the same proportion for the evaluation of properties. The powders' mixtures were homogenized, dried and compressed under pressure uniaxial and isostatic. Sintering was carried out in 1850 ⁰C under pressure of 0,1MPa N2 for 1 h with a heating rate of 25 ⁰C / min and cooling in the furnace inertia. The characterizations were performed using Archimedes principle to relative density, weight loss by measuring before and after sintering, phase analysis by X-ray diffraction, microstructure by scanning electron microscope (SEM), hardness and fracture toughness by the method Vickers indentation. The results obtained showed relative density of 97-98%, Vickers hardness 17 to 19 GPa, fracture toughness 5.6 to 6.8 MPa.m1/2, with phases varying from α-SiAlON and β-Si3N4 depending the types of additives used. The results are promising for tribological applications and can be defined according to the types of additives to be used
Resumo:
The ceramic pigments are colored inorganic substances that during the process of dispersion in the ceramic glazes and subsequent calcination, are stable against physical and chemical attack. Therefore, they are crystalline compounds applied in the ceramic industry for coloring vitreous base. In this study, the Pechini method was used for obtaining the pigment CuCr2O4 with heat treatment at the temperatures of 800, 900 and 1000 ° C. The powder pigments were characterized on their structural, morphological and colorimetric aspects. The thermal analysis conducted on an amorphous precursor in a TG / DTA indicates the weight loss in the entire temperature range investigated, with characteristic exothermic peak of the elimination of the organic composition of the precursor around 300°C. The development of the crystalline phases were investigated by XRD, using a diffractometer with Cu Ka radiation and graphite monochromator, where it was observed the presence of crystalline phases corresponding to Cr2O3 and CuCr2O4.The measurements of the specific surface area of the powders pigments were carried out in an equipment Micromeritcs, model ASAP 2000, using N2 as gas of adsorption/desorption. The colorimetric measurements of the pigments were made in a colorimeter Gretac Macbeth Color-eye spectrophotometer 2180 / 2180UV in CIELAB standards. Based on the obtained results, it can be verified the thermal stability of the powder pigments of green coloration, which enables it as an alternative to the materials currently used in the manufacture of ceramic tiles.
Resumo:
In this paper, we report a detailed structural and electronic characterization of PbMoO4 crystals by using a conventional hydrothermal (CH) method. The samples were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), field-emission gun scanning electron microscopy (FEG-SEM) and photoluminescence (PL) measurements. In addition, first-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the band structure and density of states for the PbMoO4. Analysis of both theoretical and experimental results allows to rationalize the role of order-disorder effects in the observed green PL emissions in these ordered powders.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper reports on the effect of the substitution of Fe3+ for Cr3+ ions in the spinel lattice of the powders was investigated. Nickel ferrite powders with a NiFe2-xCrxO4 nominal composition (x = 0.0; 0.5; 1.0 and 1.5 mol of the chromium) were synthesized by combustion reaction using urea as fuel. The powders resulting were characterized by XRD, nitrogen adsorption by BET, SEM and Mössbauer spectroscopy (57Fe Mössbauer spectra). The results show that the substitution of the Fe3+ for Cr3+ions increased the crystalline degree of the phase, reduced the superficial area and consequently increased the particle size. The Mössbauer spectra of the samples also confirm the distribution of the particles size by the magnetic properties. Analyze of the spectra Mössbauer gives an estimate of the superparamagnetic and ferromagnetic particles behavior in each sample for several chromium concentrations.
Resumo:
The Polymeric Precursor Method has proved suitable for synthesizing reactive powders using low temperatures of calcination, especially when compared with conventional methods. However, during the thermal decomposition of the polymeric precursor the combustion event can be releases an additional heat that raises the temperature of the sample in several tens of degrees Celsius above the set temperature of the oven. This event may be detrimental to some material types, such as the titanium dioxide semiconductor. This ceramic material has a phase transition at around 600 ° C, which involves the irreversible structural rearrangement, characterized by the phase transition from anatase to rutile TiO2 phase. The control of the calcination step then becomes very important because the efficiency of the photocatalyst is dependent on the amount of anatase phase in the material. Furthermore, use of dopant in the material aims to improve various properties, such as increasing the absorption of radiation and in the time of the excited state, shifting of the absorption edge to the visible region, and increasing of the thermal stability of anatase. In this work, samples of titanium dioxide were synthesized by the Polymeric Precursor Method in order to investigate the effect of Fe (III) doping on the calcination stages. Thermal analysis has demonstrated that the Fe (III) insertion at 1 mol% anticipates the organic decomposition, reducing the combustion event in the final calcination. Furthermore, FTIR-PAS, XRD and SEM results showed that organic matter amount was reduced in the Fe (III)-doped TiO2 sample, which reduced the rutile phase amount and increased the reactivity and crystallinity of the powder samples.
Resumo:
A Photocatalyst ceramic powder that presented high photoactivity based on TiO2 modified with 25% molar of SnO2 and up to 5% molar of Ag2O was obtained in the present work. The aforementioned ceramic powder was obtained using all commercial oxides as well as the oxides mixture technique. The powders were ground in high energy mill for one hour with subsequent thermal treatment at 400°C for four hours. They were, furthermore, characterized using surface area of around 6m2/g, where the X-Ray diffraction results provided evidence for the presence of anatase and rutile phases, known to be typical characteristics of both the TiO2 and SnO2 used. During the thermal treatment, Ag2O was reduced to metallic silver. The photodegradation rehearsals were carried out using a 0.01 mmol/L Rhodamine B solution in a 100mg/L photocatalyst suspension in a 500ml beaker, which was irradiated with 4W germicide Ultraviolet light of 254nm. In addition, samples were removed after duration of about 10 minutes to an hour, where they were analyzed thoroughly in UV-vis spectrophotometer. The analysis of the results indicated that for the compositions up to 2.5% molar of Ag2O, the photoactivity was found to be greater than that of Degussa P25 photocatalyst powder, and as such it was then used as a reference. Taking into account 90% degradation of Rhodamine B, a duration period of 11 minutes was obtained for the developed photocatalyst powder compared to the 38 minutes observed for the Degussa P25. FEG-SEM micrographies enabled the verification of the morphology as well as the interaction of the oxide particles with the metallic silver, which led us to propose a model for the increase in photoactivity observed in the photocatalyst powder under investigation.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IBILCE
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)