926 resultados para portable analyzer
Resumo:
A single-step lateral flow immunoassay (LFIA) was developed and validated for the rapid screening of paralytic shellfish toxins (PSTs) from a variety of shellfish species, at concentrations relevant to regulatory limits of 800 μg STX-diHCl equivalents/kg shellfish meat. A simple aqueous extraction protocol was performed within several minutes from sample homogenate. The qualitative result was generated after a 5 min run time using a portable reader which removed subjectivity from data interpretation. The test was designed to generate noncompliant results with samples containing approximately 800 μg of STX-diHCl/kg. The cross-reactivities in relation to STX, expressed as mean ± SD, were as follows: NEO: 128.9% ± 29%; GTX1&4: 5.7% ± 1.5%; GTX2&3: 23.4% ± 10.4%; dcSTX: 55.6% ± 10.9%; dcNEO: 28.0% ± 8.9%; dcGTX2&3: 8.3% ± 2.7%; C1&C2: 3.1% ± 1.2%; GTX5: 23.3% ± 14.4% (n = 5 LFIA lots). There were no indications of matrix effects from the different samples evaluated (mussels, scallops, oysters, clams, cockles) nor interference from other shellfish toxins (domoic acid, okadaic acid group). Naturally contaminated sample evaluations showed no false negative results were generated from a variety of different samples and profiles (n = 23), in comparison to reference methods (MBA method 959.08, LC-FD method 2005.06). External laboratory evaluations of naturally contaminated samples (n = 39) indicated good correlation with reference methods (MBA, LC-FD). This is the first LFIA which has been shown, through rigorous validation, to have the ability to detect most major PSTs in a reliable manner and will be a huge benefit to both industry and regulators, who need to perform rapid and reliable testing to ensure shellfish are safe to eat.
Resumo:
The use of an acid violet 7 (AV7) smart ink to assess the activity of photocatalytic paint is demonstrated. A linear correlation is established between the change in oxidized dye concentration, as measured by diffuse reflectance, and the change in the green component of the RGB color values, obtained using a portable hand-held scanner, suggesting that such tests can be monitored easily using an inexpensive piece of hand-held office equipment, as opposed to an expensive lab-based instrument, such as a diffuse reflectance UV/vis spectrophotometer. The bleaching of the AV7 follows first order kinetics, at a rate that is linearly dependent upon the UVA irradiance (0.30–3.26 mW cm–2). A comparison of relative rate of bleaching of the AV7 ink with the relative rate of removal of NOx, as determined using the ISO test (ISO 22197-1:2007), established a linear relationship between the two sets of results and the relevance of this correlation is discussed briefly.
Resumo:
Energy efficiency is an essential requirement for all contemporary computing systems. We thus need tools to measure the energy consumption of computing systems and to understand how workloads affect it. Significant recent research effort has targeted direct power measurements on production computing systems using on-board sensors or external instruments. These direct methods have in turn guided studies of software techniques to reduce energy consumption via workload allocation and scaling. Unfortunately, direct energy measurements are hampered by the low power sampling frequency of power sensors. The coarse granularity of power sensing limits our understanding of how power is allocated in systems and our ability to optimize energy efficiency via workload allocation.
We present ALEA, a tool to measure power and energy consumption at the granularity of basic blocks, using a probabilistic approach. ALEA provides fine-grained energy profiling via sta- tistical sampling, which overcomes the limitations of power sens- ing instruments. Compared to state-of-the-art energy measurement tools, ALEA provides finer granularity without sacrificing accuracy. ALEA achieves low overhead energy measurements with mean error rates between 1.4% and 3.5% in 14 sequential and paral- lel benchmarks tested on both Intel and ARM platforms. The sampling method caps execution time overhead at approximately 1%. ALEA is thus suitable for online energy monitoring and optimization. Finally, ALEA is a user-space tool with a portable, machine-independent sampling method. We demonstrate two use cases of ALEA, where we reduce the energy consumption of a k-means computational kernel by 37% and an ocean modelling code by 33%, compared to high-performance execution baselines, by varying the power optimization strategy between basic blocks.
Resumo:
If there is one uncontroversial point in nuclear weapons politics it is that uninventing nuclear weapons is impossible. This article seeks to make this claim controversial by showing that it is premised on attenuated understandings of invention and the status of objects operative through familiar but problematic conceptual dualisms. The claimed impossibility of uninvention is an assertion that invention is irreversible. Drawing on “new materialism” this article produces a different understanding of invention, reinvention, and uninvention as ontologically similar practices of techno-political invention. On the basis of empirical material on the invention and re-invention of nuclear weapons, and an in-depth ethnography of laboratories inventing a portable radiation detector, both the process of invention and the “objects” themselves (weapons and detectors) are shown to be fragile and not wholly irreversible processes of assembling diverse actors (human and non-human) and provisionally stabilizing their relations. Nuclear weapons cannot be uninvented! Why not?
Resumo:
A single-step lateral flow immunoassay was developed and validated to detect okadaic acid (OA) and dinophysis toxins (DTXs), which cause diarrhetic shellfish poisoning. The performance characteristics of the test were investigated, in comparison to reference methods (liquid chromatography tandem mass spectrometry and/or bioassay), using both spiked and naturally contaminated shellfish. A portable reader was used to generate a qualitative result, indicating the absence or presence of OA-group toxins, at concentrations relevant to the maximum permitted level (MPL). Sample homogenates could be screened in 20 min (including extraction and assay time) for the presence of free toxins (OA, DTX1, DTX2). DTX3 detection could be included with the addition of a hydrolysis procedure. No matrix effects were observed from the species evaluated (mussels, scallops, oysters, and clams). Results from naturally contaminated samples (n = 72) indicated no false compliant results and no false noncompliant results at <50% MPL. Thus, the development of a new low-cost but highly effective tool for monitoring a range of important phycotoxins has been demonstrated.
Resumo:
The growing accessibility to genomic resources using next-generation sequencing (NGS) technologies has revolutionized the application of molecular genetic tools to ecology and evolutionary studies in non-model organisms. Here we present the case study of the European hake (Merluccius merluccius), one of the most important demersal resources of European fisheries. Two sequencing platforms, the Roche 454 FLX (454) and the Illumina Genome Analyzer (GAII), were used for Single Nucleotide Polymorphisms (SNPs) discovery in the hake muscle transcriptome. De novo transcriptome assembly into unique contigs, annotation, and in silico SNP detection were carried out in parallel for 454 and GAII sequence data. High-throughput genotyping using the Illumina GoldenGate assay was performed for validating 1,536 putative SNPs. Validation results were analysed to compare the performances of 454 and GAII methods and to evaluate the role of several variables (e.g. sequencing depth, intron-exon structure, sequence quality and annotation). Despite well-known differences in sequence length and throughput, the two approaches showed similar assay conversion rates (approximately 43%) and percentages of polymorphic loci (67.5% and 63.3% for GAII and 454, respectively). Both NGS platforms therefore demonstrated to be suitable for large scale identification of SNPs in transcribed regions of non-model species, although the lack of a reference genome profoundly affects the genotyping success rate. The overall efficiency, however, can be improved using strict quality and filtering criteria for SNP selection (sequence quality, intron-exon structure, target region score).
Resumo:
In recent years, Structural Health Monitoring (SHM) systems have been developed to monitor bridge deterioration, assess real load levels and hence extend bridge life and safety. A road bridge is only safe if the stresses caused by the passing vehicles are less than the capacity of the bridge to resist them. Conventional SHM systems can be used to improve knowledge of the bridges capacity to resist stresses but generally give no information on the causes of any increase in stresses (based on measuring strain). The concept of in Bridge Weigh-in-Motion (B-WIM) is to establish axle loads, without interruption to traffic flow, by using strain sensors at a bridge soffit and subsequently converting the data to real time axle loads or stresses. Recent studies have shown it would be most beneficial to develop a portable system which can be easily attached to existing and new bridge structures for a specified monitoring period. The sensors could then be left in place while the data acquisition can be moved for various other sites. Therefore it is necessary to find accurate sensors capable of capturing peak strains under dynamic load and suitable methods for attaching these strain sensors to existing and new bridge structures. Additionally, it is important to ensure accurate strain transfer between concrete and steel, the adhesives layer and the strain sensor. This paper describes research investigating the suitably of using various sensors for the monitoring of concrete structures under dynamic vehicle load. Electrical resistance strain (ERS) gauges, vibrating wire (VW) gauges and fibre optic sensors (FOS) are commonly used for SHM. A comparative study will be carried out to select a suitable sensor for a bridge Weigh in Motion System. This study will look at fixing methods, durability, scanning rate and accuracy range. Finite element modeling is used to predict the strains which are then validated in laboratory trials.
Resumo:
The circumstances in Colombo, Sri Lanka, and in Belfast, Northern Ireland, which led to a) the generalization of luminescent PET (photoinduced electron transfer) sensing/switching as a design tool, b) the construction of a market-leading blood electrolyte analyzer and c) the invention of molecular logic-based computation as an experimental field, are delineated. Efforts to extend the philosophy of these approaches into issues of small object identification, nanometric mapping, animal visual perception and visual art are also outlined.
Resumo:
OBJECTIVES:
To compare methods to estimate the incidence of visual field progression used by 3 large randomized trials of glaucoma treatment by applying these methods to a common data set of annually obtained visual field measurements of patients with glaucoma followed up for an average of 6 years.
METHODS:
The methods used by the Advanced Glaucoma Intervention Study (AGIS), the Collaborative Initial Glaucoma Treatment Study (CIGTS), and the Early Manifest Glaucoma Treatment study (EMGT) were applied to 67 eyes of 56 patients with glaucoma enrolled in a 10-year natural history study of glaucoma using Program 30-2 of the Humphrey Field Analyzer (Humphrey Instruments, San Leandro, Calif). The incidence of apparent visual field progression was estimated for each method. Extent of agreement between the methods was calculated, and time to apparent progression was compared.
RESULTS:
The proportion of patients progressing was 11%, 22%, and 23% with AGIS, CIGTS, and EMGT methods, respectively. Clinical assessment identified 23% of patients who progressed, but only half of these were also identified by CIGTS or EMGT methods. The CIGTS and the EMGT had comparable incidence rates, but only half of those identified by 1 method were also identified by the other.
CONCLUSIONS:
The EMGT and CIGTS methods produced rates of apparent progression that were twice those of the AGIS method. Although EMGT, CIGTS, and clinical assessment rates were comparable, they did not identify the same patients as having had field progression.
Resumo:
PURPOSE:
We sought to measure the impact of central corneal thickness (CCT), a possible risk factor for glaucoma damage, and corneal hysteresis, a proposed measure of corneal resistance to deformation, on various indicators of glaucoma damage.
DESIGN:
Observational study.
METHODS:
Adult patients of the Wilmer Glaucoma Service underwent measurement of hysteresis on the Reichert Ocular Response Analyzer and measurement of CCT by ultrasonic pachymetry. Two glaucoma specialists (H.A.Q., N.G.C.) reviewed the chart to determine highest known intraocular pressure (IOP), target IOP, diagnosis, years with glaucoma, cup-to-disk ratio (CDR), mean defect (MD), pattern standard deviation (PSD), glaucoma hemifield test (GHT), and presence or absence of visual field progression.
RESULTS:
Among 230 subjects, the mean age was 65 +/- 14 years, 127 (55%) were female, 161 (70%) were white, and 194 (85%) had a diagnosis of primary open-angle glaucoma (POAG) or suspected POAG. In multivariate generalized estimating equation models, lower corneal hysteresis value (P = .03), but not CCT, was associated with visual field progression. When axial length was included in the model, hysteresis was not a significant risk factor (P = .09). A thinner CCT (P = .02), but not hysteresis, was associated with a higher CDR at the most recent examination. Neither CCT nor hysteresis was associated with MD, PSD, or GHT "outside normal limits."
CONCLUSIONS:
Thinner CCT was associated with the state of glaucoma damage as indicated by CDR. Axial length and corneal hysteresis were associated with progressive field worsening.
Resumo:
PURPOSE:
To determine the test-retest variability in perimetric, optic disc, and macular thickness parameters in a cohort of treated patients with established glaucoma.
PATIENTS AND METHODS:
In this cohort study, the authors analyzed the imaging studies and visual field tests at the baseline and 6-month visits of 162 eyes of 162 participant in the Glaucoma Imaging Longitudinal Study (GILS). They assessed the difference, expressed as the standard error of measurement, of Humphrey field analyzer II (HFA) Swedish Interactive Threshold Algorithm fast, Heidelberg retinal tomograph (HRT) II, and retinal thickness analyzer (RTA) parameters between the two visits and assumed that this difference was due to measurement variability, not pathologic change. A statistically significant change was defined as twice the standard error of measurement.
RESULTS:
In this cohort of treated glaucoma patients, it was found that statistically significant changes were 3.2 dB for mean deviation (MD), 2.2 for pattern standard deviation (PSD), 0.12 for cup shape measure, 0.26 mm for rim area, and 32.8 microm and 31.8 microm for superior and inferior macular thickness, respectively. On the basis of these values, it was estimated that the number of potential progression events detectable in this cohort by the parameters of MD, PSD, cup shape measure, rim area, superior macular thickness, and inferior macular thickness was 7.5, 6.0, 2.3, 5.7, 3.1, and 3.4, respectively.
CONCLUSIONS:
The variability of the measurements of MD, PSD, and rim area, relative to the range of possible values, is less than the variability of cup shape measure or macular thickness measurements. Therefore, the former measurements may be more useful global measurements for assessing progressive glaucoma damage.
Resumo:
PURPOSE:
This study explored the gaze patterns of fully sighted and visually impaired subjects during the high-risk activity of crossing the street.
METHODS:
Gaze behavior of 12 fully sighted subjects, nine with visual impairment resulting from age-related macular degeneration and 12 with impairment resulting from glaucoma, was monitored using a portable eye tracker as they crossed at two unfamiliar intersections.
RESULTS:
All subject groups fixated primarily on vehicles and crossing elements but changed their fixation behavior as they moved from "walking to the curb" to "standing at the curb" and to "crossing the street." A comparison of where subjects fixated in the 4-second time period before crossing showed that the fully sighted who waited for the light to change fixated on the light, whereas the fully sighted who crossed early fixated primarily on vehicles. Visually impaired subjects crossing early or waiting for the light fixate primarily on vehicles.
CONCLUSIONS:
Vision status affects fixation allocation while performing the high-risk activity of street crossing. Crossing decision-making strategy corresponds to fixation behavior only for the fully sighted subjects.
Resumo:
PURPOSE: To estimate the relationships between ocular parameters and tonometrically measured intraocular pressure (IOP), to determine the influence of ocular parameters on different instrument measurements of IOP, and to evaluate the association of ocular parameters with a parameter called hysteresis. METHODS: Patients presenting at a glaucoma clinic were recruited for this study. Subjects underwent IOP measurement with the Goldmann applanation tonometer (GAT), the TonoPen, and the Reichert Ocular Response Analyzer (ORA), and also measurements of central corneal thickness (CCT), axial length, corneal curvature, corneal astigmatism, central visual acuity, and refractive error. Chart information was reviewed to determine glaucoma treatment history. The ORA instrument provided a measurement called corneal hysteresis. The association between measured IOP and the other ocular characteristics was estimated using generalized estimating equations. RESULTS: Among 230 patients, IOP measurements from the TonoPen read lowest, and ORA read highest, and GAT measurements were closest to the mean IOP of the 3 instruments. In a multiple regression model adjusting for age, sex, race, and other ocular characteristics, a 10 microm increase in CCT was associated with an increase of 0.79 mm Hg measured IOP in untreated eyes (P<0.0001). Of the 3 tonometers, GAT was the least affected by CCT (0.66 mm Hg/10 mum, P<0.0001). Hysteresis was significantly correlated with CCT with a modest correlation coefficient (r=0.20, P<0.0007). CONCLUSIONS: Among parameters related to measured IOP, features in addition to CCT, such as hysteresis and corneal curvature, may also be important. Tonometric instruments seem to be affected differently by various physiologic characteristics.
Resumo:
PURPOSE: To evaluate the association between corneal hysteresis and axial length/refractive error among rural Chinese secondary school children. DESIGN: Cross-sectional cohort study. METHODS: Refractive error (cycloplegic auto-refraction with subjective refinement), central corneal thickness (CCT) and axial length (ultrasonic measurement), intraocular pressure (IOP), and corneal hysteresis (Reichert Ocular Response Analyzer) were measured on a rural school-based cohort of children. RESULTS: Among 1,233 examined children, the mean age was 14.7 +/- 0.8 years and 699 (56.7%) were girls. The mean spherical equivalent (n = 1,232) was -2.2 +/- 1.6 diopters (D), axial length (n = 643) was 23.7 +/- 1.1 mm, corneal hysteresis (n = 1,153) was 10.7 +/- 1.6 mm Hg, IOP (n = 1,153) was 17.0 +/- 3.4 mm Hg, and CCT (n = 1,226) was 553 +/- 33 microns. In linear regression models, longer axial length was significantly (P < .001 for both) associated with lower corneal hysteresis and higher IOP. Hysteresis in this population was significantly (P < .001) lower than has previously been reported for normal White children (n = 42, 12.3 +/- 1.3 mm Hg), when adjusting for age and gender. This difference did not appear to depend on differences in axial length between the populations, as it persists when only Chinese children with normal uncorrected vision are included. CONCLUSIONS: Prospective studies will be needed to determine if low hysteresis places eyes at risk for axial elongation secondary or if primary elongation results in lower hysteresis.
Resumo:
BACKGROUND: We sought to determine whether corneal biomechanical parameters are predictive of reduction in axial length after anti-metabolite trabeculectomy. METHODS: Chinese subjects undergoing trabeculectomy with mitomycin C by a single experienced surgeon underwent the following measurements: Corneal hysteresis (CH, Ocular Response Analyzer, Reichert Ophthalmic Instruments), Goldmann intra-ocular pressure (IOP), central corneal thickness (CCT) and axial length (AL, IOLMaster, Carl Zeiss Meditec, Dublin, CA) were measured pre-operatively, and AL, CH and IOP were measured 1 day and 1 week post-operatively. RESULTS: Mean age of 31 subjects was 52.0 ± 15.2 years, and 15 (48.4%) were female. The mean pre-operative IOP of 21.4 ± 9.3 mmHg was reduced to 8.2 ± 4.6 mmHg 1 day and 11.0 ± 4.4 mmHg 1 week post-operatively (p < 0.001). AL declined from 22.99 ± 0.90 to 22.76 ± 0.87 mm at 1 day and 22.74 ± 0.9 mm at 1 week; 30/31 (%) eyes had a decline in AL (p < 0.001, sign test). In multivariate linear regression models including post-operative data from 1 day and 1 week, greater decline in Goldmann IOP (p < 0.0001, greater pre-op axial length (p < 0.001) and lower pre-operative CH (p = 0.03), were all associated with greater decline in post-operative axial length. CONCLUSIONS: Eyes with lesser ability of the ocular coat to absorb energy (lower CH) had significantly greater decrease in axial length after trabeculectomy-induced IOP-lowering.