971 resultados para porous carbon
Resumo:
Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural with LiCoO2, is considered as a potential cathode material for Li-ion batteries. Submicrometer sized porous particles are useful for high discharge rates. The present work involves a synthesis of submicrometer sized porous particles of LiNi1/3Co1/3Mn1/3O2 using a triblock copolymer as a soft template. The precursor obtained from the reaction is heated at different temperatures between 600 and 900 degrees C for 6 h to get the final product samples. The compound attains increased crystallinity with an increase in the temperature of preparation. However, there is a decrease in the surface area and also in the porosity of the sample. Nevertheless, the LiNi1/3Co1/3Mn1/3O2 sample prepared at 900 degrees C exhibits a high rate capability and stable capacity retention on cycling. The electrochemical performance of LiNi1/3Co1/3Mn1/3O2 prepared in the absence of the polymer template is inferior to that of the sample prepared in the presence of the polymer template. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3364944] All rights reserved.
Resumo:
We use atomistic molecular dynamics (MD) simulations to study the diffusion of water molecules confined inside narrow (6,6) carbon nanorings. The water molecules form two oppositely polarized chains. It is shown that the effective interaction between these two chains is repulsive in nature. The computed mean-squared displacement (MSD) clearly shows a scaling with time
Resumo:
Biodiesel was synthesized in supercritical fluids by two routes: non-catalytically in supercritical alcohols and by enzyme catalysis in supercritical carbon dioxide. Two oils, sesame oil and mustard oil, and two alcohols, methanol and ethanol, were used for the synthesis. Complete conversion was observed for synthesis in supercritical alcohols whereas only a maximum of 70% conversion was observed for the enzymatic synthesis in supercritical carbon dioxide. For the synthesis in supercritical alcohols, the activation energies and pseudo-first order rate constants were determined. For the reactions in supercritical carbon dioxide, a mechanism based on ping pong bi-bi was proposed and the kinetic parameters were determined. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Multiwalled carbon nanotubes have been prepared by pyrolysing tetrahydrofuran (THF) in the presence of nickelocene. Pyrolysis of the precursor mixture has been achieved at temperature as low as 600 degrees C. In this simple approach no carrier gas has been used. The yield of purified carbon nanotubes is found to be more than 65%. Characterization of the as-prepared and purified nanotubes are done by Xray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy and Raman spectra.
Resumo:
Nanorods of several oxides, with diameters in the range of 10-200 nm and lengths upto a few microns, have been prepared by templating against carbon nanotubes. The oxides include V2O5, WO3, MoO3 and Sb2O5 as well as metallic MoO2, RuO2 and IrO2. The nanorods tend to be single-crystalline structures. Nanotube structures have also been obtained in MoO3 and RuO2.
Resumo:
Single crystals of a symmetrically substituted molecule, 1,3,5-triazine-2,4,6-triaminehexaacetic acid, (TTHA) and its Ca2+ salt have been synthesized, the analysis of which reveals the existence of novel channel type cavities and helical packing organizations in the crystals.
Resumo:
We investigate the dielectric response of single-walled carbon nanotubes dispersed in poly(vinyl alcohol) matrix by using terahertz time domain spectroscopy. Frequency-dependent real and imaginary parts of the complex dielectric function are measured experimentally in the terahertz regime. The low-frequency phonons of carbon nanotubes, though predicted theoretically, are directly observed for the first time at frequencies 0.26, 0.60, and 0.85 THz. Further, a broad resonance is observed at 1.15 THz associated with the longitudinal acoustic mode of vibration of straight-chain segments of the long polymeric molecules in the film. The latter is observed at 1.24 THz for a pristine polymer film and has been used to derive the size of crystalline lamellae in the film.
Resumo:
The unsteady laminar free convection flow of an incompressible electrically conducting fluid over two-dimensional and axisymmetric bodies embedded in a highly porous medium with an applied magnetic field has been studied. The unsteadiness in the flow field is caused by the variation of the wall temperature and concentration with time. The coupled nonlinear partial differential equations with three independent variables have been solved numerically using an implicit finite-difference scheme in combination with the quasilinearization technique. It is observed that the skin friction, heat transfer and mass transfer increase with the permeability parameter but decrease with the magnetic parameter. The results are strongly dependent on the variation of wall temperature and concentration with time. The skin friction and heat transfer increase or decrease as the buoyancy forces from species diffusion assist or oppose the thermal buoyancy force. However, the mass transfer is found to be higher for small values of the ratio of the buoyancy parameters than for large values
Resumo:
The formation of crystalline diamond films from amorphous diamond-like carbon films by pulsed laser irradiation with a 300 μs non-Q-switched Nd:YAG laser has been established by a combined study of transmission electron microscopy, x-ray photoelectron spectroscopy, and electrical resistivity. The films have been prepared by glow discharge decomposition of a mixture of propane, n-butane, and hydrogen in a rf plasma operating at a frequency of 13.56 MHz. Prior to laser irradiation, the films have been found to be amorphous by transmission electron microscope studies. After irradiation, the electron diffraction patterns clearly point out the formation of cubic diamond structure with a lattice spacing of 3.555 Å. However, the close similarity between diamond and graphite electron diffraction patterns could sometimes be misleading regarding the formation of a diamond structure, and hence, x-ray photoelectron spectroscopic studies have been carried out to confirm the results. A chemical shift in the C 1s core level binding energies towards higher values, viz., from 286.5 to 287.8 eV after laser irradiation, and a high electrical resistivity >1013 Ω cm are consistent with the growth of diamond structure. This novel "low-temperature, low-pressure" synthesis of diamond films offers enormous potential in terms of device compatibility with other solid-state devices.
Resumo:
Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics innanoparticles of anatase polymorph of titania is discussed here.Sol-gel synthesized nanoparticles of titania (particle size similar to 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size similar to 10 nm) displayed immensely superior cyclability and rate capability (higher current rates similar to 4 g(-1)) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystal enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of unmodified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in a decrease in the irreversible capacity observed in the case of nanoparticles without any carbon coating.
Resumo:
dThe work looks at the response to three-point loading of carbon-epoxy (CF-EP) composites with inserted buffer strip (BS) material. Short beam Shear tests were performed to study the load-deflection response as well as fracture features through macroscopy on the CF-EP system containing the interleaved PTFE-coated fabric material. Significant differences were noticed in the response of the CF-EP system to the bending process consequent to the architectural modification. It was inferred that introduction of small amounts of less adherent layers of material at specific locations causes a decrement in the load carrying capability. Further the number and the ease with which interface separation occurs is found to depend on the extent to which the inserted layer is present in either single or multiple layer positions.
Resumo:
Electrodes made of purified and open single walled carbon nanotubes behave like metal hydride electrodes in Ni-MH batteries, showing high electrochemical reversible charging capacity up to 800 mAh g(-1) corresponding to a hydrogen storage capacity of 2.9 wt% compared to known AB(5), AB(2) metal hydride electrodes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A complete analytical solution is obtained, by using an integral transform method, for the porous-wavemaker problem, when the effect of surface tension is taken into account on the free surface of water of finite-depth in which surface waves are produced by small horizontal oscillations of a porous vertical plate. The final results are expressed in the form of convergent integrals as well as series and known results are reproduced when surface tension is neglected.