879 resultados para population-size dependent processes
Resumo:
The theoretical impacts of anthropogenic habitat degradation on genetic resources have been well articulated. Here we use a simulation approach to assess the magnitude of expected genetic change, and review 31 studies of 23 neotropical tree species to assess whether empirical case studies conform to theory. Major differences in the sensitivity of measures to detect the genetic health of degraded populations were obvious. Most studies employing genetic diversity (nine out of 13) found no significant consequences, yet most that assessed progeny inbreeding (six out of eight), reproductive output (seven out of 10) and fitness (all six) highlighted significant impacts. These observations are in line with theory, where inbreeding is observed immediately following impact, but genetic diversity is lost slowly over subsequent generations, which for trees may take decades. Studies also highlight the ecological, not just genetic, consequences of habitat degradation that can cause reduced seed set and progeny fitness. Unexpectedly, two studies examining pollen flow using paternity analysis highlight an extensive network of gene flow at smaller spatial scales (less than 10 km). Gene flow can thus mitigate against loss of genetic diversity and assist in long-term population viability, even in degraded landscapes. Unfortunately, the surveyed studies were too few and heterogeneous to examine concepts of population size thresholds and genetic resilience in relation to life history. Future suggested research priorities include undertaking integrated studies on a range of species in the same landscapes; better documentation of the extent and duration of impact; and most importantly, combining neutral marker, pollination dynamics, ecological consequences, and progeny fitness assessment within single studies.
Resumo:
In species with low levels of dispersal the chance of closely related individuals breeding may be a potential problem; sex-biased dispersal is a mechanism that may decrease the possibility of cosanguineous mating. Fragmentation of the habitat in which a species lives may affect mechanisms such as sex-biased dispersal, which may in turn exacerbate more direct effects of fragmentation such as decreasing population size that may lead to inbreeding depression. Relatedness statistics calculated using microsatellite DNA data showed that rainforest fragmentation has had an effect on the patterns of dispersal in the prickly forest skink (Gnypetoscincus queenslandiae), a rainforest endemic of the Wet Tropics of north eastern Australia. A lower level of relatedness was found in fragments compared to continuous forest sites due to a significantly lower level of pairwise relatedness between males in rainforest fragments. The pattern of genetic relatedness between sexes indicates the presence of male-biased dispersal in this species, with a stronger pattern detected in populations in rainforest fragments. Male prickly forest skinks may have to move further in fragmented habitat in order to find mates or suitable habitat logs.
Resumo:
The molecular clock does not tick at a uniform rate in all taxa but maybe influenced by species characteristics. Eusocial species (those with reproductive division of labor) have been predicted to have faster rates of molecular evolution than their nonsocial relatives because of greatly reduced effective population size; if most individuals in a population are nonreproductive and only one or few queens produce all the offspring, then eusocial animals could have much lower effective population sizes than their solitary relatives, which should increase the rate of substitution of nearly neutral mutations. An earlier study reported faster rates in eusocial honeybees and vespid wasps but failed to correct for phylogenetic nonindependence or to distinguish between potential causes of rate variation. Because sociality has evolved independently in many different lineages, it is possible to conduct a more wide-ranging study to test the generality of the relationship. We have conducted a comparative analysis of 25 phylogenetically independent pairs of social lineages and their nonsocial relatives, including bees, wasps, ants, termites, shrimps, and mole rats, using a range of available DNA sequences (mitochondrial and nuclear DNA coding for proteins and RNAs, and nontranslated sequences). By including a wide range of social taxa, we were able to test whether there is a general influence of sociality on rates of molecular evolution and to test specific predictions of the hypothesis: (1) that social species have faster rates because they have reduced effective population sizes; (2) that mitochondrial genes would show a greater effect of sociality than nuclear genes; and (3) that rates of molecular evolution should be correlated with the degree of sociality. We find no consistent pattern in rates of molecular evolution between social and nonsocial lineages and no evidence that mitochondrial genes show faster rates in social taxa. However, we show that the most highly eusocial Hymenoptera do have faster rates than their nonsocial relatives. We also find that social parasites (that utilize the workers from related species to produce their own offspring) have faster rates than their social relatives, which is consistent with an effect of lower effective population size on rate of molecular evolution. Our results illustrate the importance of allowing for phylogenetic nonindependence when conducting investigations of determinants of variation in rate of molecular evolution.
Resumo:
The thelastomatoid fauna of two species of wood-burrowing cockroach (Blattodea, Blaberidae), Panesthia cribrata and Panesthia tryoni tryoni, from Lamington National Park, Australia, is described. The following eight new species and three new genera of thelastomatid are proposed: Bilobostoma exerovulva n. g., n. sp.; Cordonicola gibsoni n. sp.; Coronostoma australiae n. sp.; Desmicola ornata n. sp.; Hammerschmidtiella hochi n. sp.; Malaspinanema goateri n. g., n. sp.; Travassosinema jaidenae n. sp.; and Tsuganema cribratum n. g., n. sp. Additional data are given for Blattophila sphaerolaima and Leidynemella fusiformis. Of the 11 species reported, nine were found in P. cribrata and ten in P. tryoni tryoni. Such levels of thelastomatoid species richnessness in single host species are exceptional. Only the mole cricket, Gryllotalpa africana (23), and the domestic cockroach, Periplaneta americana (20), have higher reported richness. Three species, T jaidenae, C. australiae and D. ornata, were found either exclusively or significantly more prevalently in P tryoni tryoni than in R cribrata. Species of Travassosinema, Coronostoma and Desmicola have been found previously only in millipedes (Diplopoda), a fact that suggests that there is a greater degree of niche overlap between R tryoni tryoni and millipedes than for R cribrata.
Resumo:
To explore the evolutionary consequences of climate-induced fluctuations in distribution of rainforest habitat we contrasted demographic histories of divergence among three lineages of Australian rainforest endemic skinks. The red-throated rainbow skink, Carlia rubrigularis, consists of morphologically indistinguishable northern and southern mitochondrial DNA (mtDNA) lineages that are partially reproductively isolated at their parapatric boundary. The third lineage (C. rhomboidalis) inhabits rainforests just to the south of C. rubrigularis, has blue, rather than red-throated males, and for mtDNA is more closely related to southern C. rubrigularis than is northern C. rubrigularis. Multigene coalescent analyses supported more recent divergence between morphologically distinct lineages than between morphologically conservative lineages. There was effectively no migration and therefore stronger isolation between southern C. rubrigularis and C. rhomboidalis, and low unidirectional migration between morphologically conservative lineages of C. rubrigularis. We found little or no evidence for strong differences in effective population size, and hence different contributions of genetic drift in the demographic history of the three lineages. Overall the results suggest contrasting responses to long-term fluctuations in rainforest habitats, leading to varying opportunities for speciation.
Resumo:
Sibly et at. (Reports, 22 July 2005, p. 607) recently estimated the relationship between population size and growth rate for 1780 time series of various species. I explain why some aspects of their analysis are questionable and, therefore, why their results and estimation procedure should be used with care.
Resumo:
To provide an estimate of kangaroo numbers for harvest management, a survey was designed for an area of 29500 km(2) encompassing the agricultural and grazing lands of the Braidwood, Cooma, Goulburn, Gundagai and Yass Rural Lands Protection Board (RLPB) districts in south-east New South Wales. An aerial survey using a helicopter was considered more efficient than ground survey because of the size of the area, relatively high relief and dense tree cover, and the need for regular monitoring. Tree cover and landscape relief was used to stratify the five RLPB districts into areas of probable high, medium and low kangaroo density. Kangaroo density estimated from helicopter surveys conducted in the Northern Tablelands of New South Wales was used to suggest densities and thereby allocate survey effort in each stratum. A survey comprising 735 km of transect line was conducted in winter 2003 with a target precision of 20%. The survey returned an estimate of 286600 32300 eastern grey kangaroos for the whole of the proposed south-east New South Wales kangaroo-management zone. In 2004, a trial harvest of slightly less than 15% of this estimate was taken. Success of the trial will be determined by the impact of harvesting on the population's dynamics, by landholder and industry participation, and by the capacity to monitor population size, harvest offtake and compliance with regulations.
Resumo:
Ecological and genetic studies of marine turtles generally support the hypothesis of natal homing, but leave open the question of the geographical scale of genetic exchange and the capacity of turtles to shift breeding sites. Here we combine analyses of mitochondrial DNA (mtDNA) variation and recapture data to assess the geographical scale of individual breeding populations and the distribution of such populations through Australasia. We conducted multiscale assessments of mtDNA variation among 714 samples from 27 green turtle rookeries and of adult female dispersal among nesting sites in eastern Australia. Many of these rookeries are on shelves that were flooded by rising sea levels less than 10 000 years (c. 450 generations) ago. Analyses of sequence variation among the mtDNA control region revealed 25 haplotypes, and their frequency distributions indicated 17 genetically distinct breeding stocks (Management Units) consisting either of individual rookeries or groups of rookeries in general that are separated by more than 500 km. The population structure inferred from mtDNA was consistent with the scale of movements observed in long-term mark-recapture studies of east Australian rookeries. Phylogenetic analysis of the haplotypes revealed five clades with significant partitioning of sequence diversity (Phi = 68.4) between Pacific Ocean and Southeast Asian/Indian Ocean rookeries. Isolation by distance was indicated for rookeries separated by up to 2000 km but explained only 12% of the genetic structure. The emerging general picture is one of dynamic population structure influenced by the capacity of females to relocate among proximal breeding sites, although this may be conditional on large population sizes as existed historically across this region.
Resumo:
The thelastomatoid fauna of Macropanesthia rhinoceros was examined from 13 localities across its range in Queensland, Australia. Nine species of thelastomatoids, including two representing new genera, Geoscaphenema megaovum n. g., n. sp. and Jaidenema rhinoceratum n. g., n. sp., were found. Macropanesthia rhinoceros is reported as a new host for seven species previously recorded from Panesthia cribrata (Blaberidae: Panesthiinae) and P. tryoni tryoni, viz, Blattophila sphaerolaima, Leidynemella fusiformis, Cordonicola gibsoni, Travassosinema jaidenae, Coronostoma australiae, Hammerschmidtiella hochi and Desmicola ornata. Overall estimated richness for the system ranged from 10.1-13.5 species. The high degree of parasite faunal overlap between M. rhinoceros and the two Panesthia species is surprising given the disparate ecological niches that they occupy; P. cribrata and P. tryoni tryoni burrow in, and feed upon, moist decaying wood and require a climate that is moist all year round, whereas M. rhinoceros burrows in loose soil, feeds on fallen leaf litter and is tolerant of much drier environments.
Resumo:
Typical disturbances of biological environment such as background scatter and refractive index variations have little effect on the size-dependent scattering property of highly refractive nanocrystals, which are potentially attractive optical labels. We report on what is to our knowledge the first investigation of these scattering optical labels, and their sizing, in particular, by imaging at subvideo frame rates and analyzing samples of diamond nanocrystals deposited on a glass substrate in air and in a matrix of weakly scattering polymer. The brightness of a diffraction-limited spot appears to serve as a reliable measure of the particle size in the Rayleigh scattering limit. (c) 2006 Optical Society of America.
Resumo:
A formalism for describing the dynamics of Genetic Algorithms (GAs) using method s from statistical mechanics is applied to the problem of generalization in a perceptron with binary weights. The dynamics are solved for the case where a new batch of training patterns is presented to each population member each generation, which considerably simplifies the calculation. The theory is shown to agree closely to simulations of a real GA averaged over many runs, accurately predicting the mean best solution found. For weak selection and large problem size the difference equations describing the dynamics can be expressed analytically and we find that the effects of noise due to the finite size of each training batch can be removed by increasing the population size appropriately. If this population resizing is used, one can deduce the most computationally efficient size of training batch each generation. For independent patterns this choice also gives the minimum total number of training patterns used. Although using independent patterns is a very inefficient use of training patterns in general, this work may also prove useful for determining the optimum batch size in the case where patterns are recycled.
Resumo:
A theoretical model is presented which describes selection in a genetic algorithm (GA) under a stochastic fitness measure and correctly accounts for finite population effects. Although this model describes a number of selection schemes, we only consider Boltzmann selection in detail here as results for this form of selection are particularly transparent when fitness is corrupted by additive Gaussian noise. Finite population effects are shown to be of fundamental importance in this case, as the noise has no effect in the infinite population limit. In the limit of weak selection we show how the effects of any Gaussian noise can be removed by increasing the population size appropriately. The theory is tested on two closely related problems: the one-max problem corrupted by Gaussian noise and generalization in a perceptron with binary weights. The averaged dynamics can be accurately modelled for both problems using a formalism which describes the dynamics of the GA using methods from statistical mechanics. The second problem is a simple example of a learning problem and by considering this problem we show how the accurate characterization of noise in the fitness evaluation may be relevant in machine learning. The training error (negative fitness) is the number of misclassified training examples in a batch and can be considered as a noisy version of the generalization error if an independent batch is used for each evaluation. The noise is due to the finite batch size and in the limit of large problem size and weak selection we show how the effect of this noise can be removed by increasing the population size. This allows the optimal batch size to be determined, which minimizes computation time as well as the total number of training examples required.
Resumo:
Multi-agent algorithms inspired by the division of labour in social insects are applied to a problem of distributed mail retrieval in which agents must visit mail producing cities and choose between mail types under certain constraints.The efficiency (i.e. the average amount of mail retrieved per time step), and the flexibility (i.e. the capability of the agents to react to changes in the environment) are investigated both in static and dynamic environments. New rules for mail selection and specialisation are introduced and are shown to exhibit improved efficiency and flexibility compared to existing ones. We employ a genetic algorithm which allows the various rules to evolve and compete. Apart from obtaining optimised parameters for the various rules for any environment, we also observe extinction and speciation. From a more theoretical point of view, in order to avoid finite size effects, most results are obtained for large population sizes. However, we do analyse the influence of population size on the performance. Furthermore, we critically analyse the causes of efficiency loss, derive the exact dynamics of the model in the large system limit under certain conditions, derive theoretical upper bounds for the efficiency, and compare these with the experimental results.
Resumo:
Purpose – The growth of women in management has been argued to offer a route to reduce organizational and social inequality. The purpose of this paper is to explore the careers and experiences of female managers from a variety of organizations operating in the West Midlands region of the UK. Design/methodology/approach – This study is based on 56 interviews conducted with women managers within various sectors. The interviewees also completed pictorial careers maps, which along with interview recordings were analyzed. Findings – The key themes to emerge from this research centre upon the factors that draw women into management (which we term seductive elements) as well as some of the hindering practices that prevent women from progressing. Significantly, we find that managerial careers are associated with gendered assumptions and practices (e.g. facilitating and developing people) which contribute to construct management (done by women) as bounded-up characteristically with “feminized” behaviours. Research limitations/implications – The research is based upon a relatively small sample that is multi-sectorial. Wider studies that increase population size, together with deeper studies that hold sectorial variables constant would further add weight to the findings presented here. Practical implications – The paper draws attention to the “lived reality” of doing management, which, we argue often, for women in particular involves the reconciliation of contradictions and conflicting pressures. We draw attention to the lack of “alternative models” of organization and highlight the potential for gender-focus mentoring and management education. Originality/value – The paper is of value in giving voice to a selection of women managers by allowing them to reflect upon and explore their experience of management. The paper also documents the day-to-day reality of women's managerial careers that require the re-enactment and reproduction of stereotypical gender norms.
Resumo:
AIM(S) To examine Primary Care Trust (PCT) demographics influencing general practitioner (GP) involvement in pharmacovigilance. METHODS PCT adverse drug reaction (ADR) reports to the Yellow Card scheme between April 2004 and March 2006 were obtained for the UK West Midlands region. Reports were analysed by all drugs, and most commonly reported drugs (‘top drugs’). PCT data, adjusted for population size, were aggregated. Prescribing statistics and other characteristics were obtained for each PCT, and associations between these characteristics and ADR reporting rates were examined. RESULTS During 2004–06, 1175 reports were received from PCTs. Two hundred and eighty (24%) of these reports were for 14 ‘top drugs’. The mean rate of reporting for PCTs was 213 reports per million population. A total of 153 million items were prescribed during 2004–06, of which 33% were ‘top drugs’. Reports for all drugs and ‘top drugs’ were inversely correlated with the number of prescriptions issued per thousand population (rs = -0.413, 95% CI -0.673, -0.062, P < 0.05, and r = -0.420, 95% CI -0.678, -0.071, P < 0.05, respectively). Reporting was significantly negatively correlated with the percentages of male GPs within a PCT, GPs over 55 years of age, single-handed GPs within a PCT, the average list size of a GP within a PCT, the overall deprivation scores and average QOF total points. ADR reports did not correlate significantly with the proportion of the population over 65 years old. CONCLUSIONS Some PCT characteristics appear to be associated with low levels of ADR reporting. The association of low prescribing areas with high ADR reporting rates replicates previous findings.