998 resultados para poly(allylamine hydrochloride)
Resumo:
Poly(ethyl acrylate) (PEA)/SiO2 hybrids with different compositions were prepared under different casting temperatures and pH values. Their morphology as investigated by transmission electron microscopy (TEM) shows that samples with different compositions have different morphologies. When the SiO2 content is lower, PEA is the continuous phase and SiO2 is the dispersed phase. At higher SiO2 content, the change in phase morphology takes place, nd PEA gradually dispersing in the form of latex particles in SiO2 matrix. Change in phase morphology depends mainly on the time the sol-gel transition occurs. At suitable casting temperature and pH value, PEA/SiO2 in 95/5 and 50/50 hybrids with even dispersion was obtained.
Resumo:
Nanostructure and morphology and their development of poly(di-n-hexylsilane) (PDHS) and poly(di-n-butylsilane) (PDBS) during the crystal-mesophase transition are investigated using small angle X-ray scattering (SAXS), wide angle X-ray diffraction and hot-stage atomic force microscopy. At room temperature, PDHS consists of stacks of lamellae separated by mesophase layers, which can be well accounted using an ideal two-phase model. During the crystal-mesophase transition, obvious morphological changes are observed due to the marked changes in main chain conformation and intermolecular distances between crystalline phase and mesophase. In contrast to PDHS, the lamellae in PDBS barely show anisotropy in dimensions at room temperature. The nonperiodic structure and rather small electronic density fluctuation in PDBS lead to the much weak SAXS. The nonperiodic structure is preserved during the crystal-mesophase transition because of the similarity of main chain conformation and intermolecular distances between crystalline phase and mesophase.
Resumo:
The effect of nucleating agents on the crystallization behavior of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was studied. A differential scanning calorimeter was used to monitor the energy of the crystallization process from the melt and melting behavior. During the crystallization process from the melt, nucleating agent led to an increase in crystallization temperature (T-c) of PHBV compared with that for plain PHBV (without nucleating agent). The melting temperature of PHBV changed little with addition of nucleating agent. However, the areas of two melting peaks changed considerably with added nucleating agent. During isothermal crystallization, dependence of the relative degree of crystallization on time was described by the Avrami equation. The addition of nucleating agent caused an increase in the overall crystallization rate of PHBV, but did not influence the mechanism of nucleation and growth of the PHB crystals. The equilibrium melting temperature of PHBV was determined as 187degreesC. Analysis of kinetic data according to nucleation theories showed that the increase in crystallization rate of PHBV in the composite is due to the decrease in surface energy of the extremity surface.
Resumo:
To synthesize the copolyester of poly(beta-hydroxybutyrate) (PHB) and poly(epsilon-caprolactone) (PCL), the transesterification of PHB and PCL was carried out in the liquid phase with stannous octoate as the catalyzer. The effects of reaction conditions on the transesterification, including catalyzer concentration, reaction temperature, and reaction time, were investigated. The results showed that both rising reaction temperature and increasing reaction time were advantageous to the transesterification. The sequence distribution, thermal behavior, and thermal stability of the copolyesters were investigated by C-13 NMR, Fourier transform infrared spectroscopy, differential scanning calorimetry, wide-angle X-ray diffraction, optical microscopy, and thermogravimetric analysis. The transesterification of PHB and PCL was confirmed to produce the block copolymers. With an increasing PCL content in the copolyesters, the thermal behavior of the copolyesters changed evidently. However, the introduction of PCL segments into PHB chains did not affect its crystalline structure. Moreover, thermal stability of the copolyesters was little improved in air as compared with that of pure PHB.
Resumo:
The miscibility and hydrogen-bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p-vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The single glass-transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen-bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen-bonding interactions between the oxygen atoms of carbon-oxygen single bonds and carbon-oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C-1s peaks and the evolution of three novel O-1s peaks in the blends, which supports the suggestion from FTIR analyses.
Resumo:
The crystallization behavior of neat PPS and PPS in blends with PMR-POI prepared by melt mixing were investigated by differential scanning calorimetry (DSC). It was found that POI was an effective nucleation agent of the crystallization for PPS. The enthalpy of crystallization of PPS in the blends increased compared with that of neat PPS. During isothermal crystallization from melt, the dependence of relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of POI causes an increase in the overall crystallization rate of PPS; it also changed the mechanism of nucleation of the PHB crystals from homogeneous nucleation to heterogeneous nucleation. The equilibrium melting temperature of PPS and PPS/POI blends were determined. The analysis of kinetic data according to nucleation theories shows that the increase in crystallization rate of PPS in the composite is due to the decrease in surface energy of the extremity surface.
Resumo:
Hydroquinone was chosen as an electroactive probe to study the beta-cyclodextrin (beta-CD) modified poly(N-acetylaniline) (PNAANI) electrode. The beta-CD modified PNAANI electrode was prepared by electrooxidation of the PNAANI electrode in a beta-CD/DMSO solution. The electrochemical properties of the beta-CD inclusion complex of hydroquinone on the PNAANI electrode and hydroquinone on the beta-CD modified PNAANI electrode were studied. In the cyclic voltammogram of hydroquinone at the beta-CD/PNAANI electrode, DeltaE(p) of the peaks is sharpening and the area of the peaks is increasing, which can be due to the inclusion of hydroquinone into the cavity of beta-CD immobilized at the electrode surface. The beta-CD/PNAANI film was characterized by X-ray photoelectron spectroscopy and H-1 NMR. The mechanism for beta-CD incorporation into the polymer film was also proposed.
Resumo:
The lipid layer membranes were fabricated on the glassy carbon electrode (GC) and demonstrated to be bilayer lipid membranes by impedance spectroscopy. The formation of incorporated poly L-glutamate bilayer lipid membrane was achieved. The ion channel behavior of the incorporated poly L-glutamate membrane was determined. When the stimulus calcium cations were added into the electrolyte, the ion channel was opened immediately and exhibited distinct channel current. Otherwise, the ion channel was closed. The cyclic voltammogram at the GC electrode coated with incorporated poly L-glutamate DMPC film response to calcium ion is very fast compared with that at the GC electrode coated only with DMPC film. Ion channel current is not dependent on the time but on the concentration of calcium. The mechanism of the ion channel formation was investigated.
Resumo:
Historically, polyaniline (PANI) had been considered an intractable material, but it can be dissolved in some solvents. Therefore, it could be processed into films or fibers. A process of preparing a blend of conductive fibers of PANI/poly-omega-aminoun-decanoyle (PA11) is described in this paper. PANI in the emeraldine base was blended with PA11 in concentrated sulfuric acid (c-H,SO,) to form a spinning dope solution. This solution was used to spin conductive PANI/PA11 fibers by wet-spinning technology. As-spun fibers were obtained by spinning the dopes into coagulation bath water or diluted acid and drawn fibers were obtained by drawing the as-spun fibers in warm drawing bath water. A scanning electron microscope was employed to study the effect of the acid concentration in the coagulation bath on the microstructure of as-spun fibers. The results showed that the coagulating rate of as-spun fibers was reduced and the size of pore shrank with an increase in the acid concentration in the coagulation bath. The weight fraction of PANI in the dope solution also had an influence on the microstructure of as-spun fibers. The microstructure of as-spun fibers had an influence on the drawing process and on the mechanical properties of the drawn fibers. Meanwhile, the electrically conductive property of the drawn fibers with different percentage of PANI was measured.
Resumo:
Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) (PHB) and maleated PHB were investigated by differential scanning calorimetry using various cooling rates. The results show that the crystallization behavior of maleated PHB from the melt greatly depends on cooling rates and its degree of grafting. With the increase in cooling rate, the crystallization process for PHB and maleated PHB begins at lower temperature. For maleated PHB, the introduction of maleic anhydride group hinders its crystallization, causing crystallization and nucleation rates to decrease, and crystallite size distribution becomes wider. The Avrami analysis, modified by Jeziorny, was used to describe the nonisothermal crystallization of PHB and maleated PHB. Double melting peaks for maleated PHB were observed, which was caused by recrystallization during the heating process.
Resumo:
Themorphologies and structures of single crystals of syndiotactic poly(propene-co-1-butene) (PPBU) with 1-butene contents of 2.6, 4.2, 9.9, 16.2, and 47.9 mol % are studied by transmission electron microscopy and electron diffraction. The electron diffraction results show that the 1-butene units are included in the crystalline phase of the sPP homopolymer. A small amount of 1-butene (<4.2 mol %) has no significant influence on the antichiral chain packing of sPP. With increasing content of 1-butene units, an increasing packing disorder is observed in the PPBU copolymers. The antichiral packing model is, however, always the predominant chain packing structure of the copolymers with the analyzed composition. Bright-field electron microscopy observation shows that the PPBU single crystals exhibit always regular rectangular or lathlike shapes with preferred growth direction along their crystallographic b-axes owing to their packing features. The incorporated 1-butene units influence the crystallization behavior of sPP distinctly. With the increase of the 1-butene units, the aspect ratio of the single crystals increases. Furthermore, the typical transverse microcracks and ripples of the highly stereoregular sPP are no more so prominent for the copolymers. The microcracks are occasionally observed in the single crystals of copolymers with low 1-butene content (less than or equal to4.2 mol %), while transverse ripples are only seen in the crystals of the copolymer having a 1-butene content of 9.9 mol %. With a further increase in the content of 1-butene units, the copolymers behave like the low stereoregular sPP, where neither cracks nor ripples are observed any more.
Resumo:
The effect of polymerization of monomer reactant-polyimide (POI) as the interfacial agent on the interface characteristics, morphology features, and crystallization of poly(ether sulfone)/poly(phenylene sulfide) (PES/PPS) blends were investigated using a scanning electron microscope, FTIR, WAXD, and XPS surface analysis. It was found that the interfacial adhesion was enhanced, the particle size of the dispersed phase was reduced, and the miscibility between PES and PPS was improved by the addition of POI. It was also found that POI was an effective nucleation agent of the crystallization for PPS.
Resumo:
It is found that Ply adsorbed roughed silver electrode, it is easy to immobilize MP-11 with the electrostatic interaction and to prepare the MP-11/Ply/Ag modified electrode. The preparation method of the modified electrode is simple. In addition, the modified electrode obtained shows the high and stable electrocatalytic activity for O-2 reduction. It is also found that when the sixth coordination of heme in MP-11 is replaced with other coordination species with stronger coordination ability, such as imidazole, its formal redox potential shifts to the negative direction and the electrocatalytic activity for O-2 reduction is reduced.