941 resultados para phylogeny, Rotifera, Acanthocephala, Syndermata


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lepidopleurida is the earliest diverged group of living polyplacophoran molluscs. They are found predominantly in the deep sea, including sunken wood, cold seeps, other abyssal habitats, and a few species are found in shallow water. The group is morphologically identified by anatomical features of their gills, sensory aesthetes, and gametes. Their shell features closely resemble the oldest fossils that can be identified as modern polyplacophorans. We present the first molecular phylogenetic study of this group, and also the first combined phylogenetic analysis for any chiton, including three gene regions and 69 morphological characters. The results show that Lepidopleurida is unambiguously monophyletic, and the nine genera fall into five distinct clades, which partly support the current view of polyplacophoran taxonomy. The genus Hanleyella Sirenko, 1973 is included in the family Protochitonidae, and Ferreiraellidae constitutes another distinct clade. The large cosmopolitan genus Leptochiton Gray, 1847 is not monophyletic; Leptochiton and Leptochitonidae sensu stricto are restricted to North Atlantic and Mediterranean taxa. Leptochitonidae s. str. is sister to Protochitonidae. The results also suggest two separate clades independently inhabiting sunken wood substrates in the south-west Pacific. Antarctic and other chemosynthetic-dwelling species may be derived from wood-living species. Substantial taxonomic revision remains to be done to resolve lepidopleuran classification, but the phylogeny presented here is a dramatic step forward in clarifying the relationships within this interesting group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The current morphological classification of the Demospongiae G4 clade was tested using large subunit ribosomal RNA (LSU rRNA) sequences from 119 taxa. Fifty-three mitochondrial cytochrome oxidase 1 (CO1) barcoding sequences were also analysed to test whether the 28S phylogeny could be recovered using an independent gene. This is the largest and most comprehensive study of the Demospongiae G4 clade. The 28S and CO1 genetrees result in congruent clades but conflict with the current morphological classification. The results confirm the polyphyly of Halichondrida, Hadromerida, Dictyonellidae, Axinellidae and Poecilosclerida and show that several of the characters used in morphological classifications are homoplasious. Robust clades are clearly shown and a new hypothesis for relationships of taxa allocated to G4 is proposed. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The allatostatins are a family of peptides isolated originally from the cockroach, Diploptera punctata. Related peptides have been identified in Periplaneta americana and the blowfly, Calliphora vomitoria. These peptides have been shown to be potent inhibitors of juvenile hormone synthesis in these species. A peptide inhibitor of juvenile hormone biosynthesis has also been isolated from the moth, Manduca sexta; however, this peptide has no structural homology with the D. punctata-type allatostatins. Investigations of the phylogeny of the D. punctata allatostatin peptide family have been started by examining a number of nonarthropod invertebrates for the presence of allatostatin-like molecules using immunocytochemistry with antisera directed against the conserved C-terminal region of this family. Allatostatin-like immunoreactivity (ALIR) was demonstrated in the nervous systems of Hydra oligactis (Hydrozoa), Moniezia expansa (Cestoda), Schistosoma mansoni (Trematoda), Artioposthia triangulata (Turbellaria), Ascaris suum (Nematoda), Lumbricus terrestris (Oligochaeta), Limax pseudoflavus (Gastropoda), and Eledone cirrhosa (Cephalopoda). ALIR could not be demonstrated in Ciona intestinalis (Ascidiacea). These results suggest that molecules related to the allatostatins may play an important role in nervous system function in many invertebrates as well as in insects and that they also have an ancient evolutionary lineage. (C) 1994 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitons are often referred to as "living fossils" in part because they are proposed as one of the earliest-diverging groups of living molluscs, but also because the gross morphology of the polyplacophoran shell has been conserved for hundreds of millions of years. As such, the analysis of evolution and radiation within polyplacophorans is of considerable interest not only for resolving the shape of pan-molluscan phylogeny but also as model organisms for the study of character evolution. This study presents a new, rigorous cladistic analysis of the morphological characters used in taxonomic descriptions for chitons in the living suborder Lepidopleurina Thiele, 1910 (the earliest-derived living group of chitons). Shell-based characters alone entirely fail to recover any recognized subdivisions within the group, which may raise serious questions about the application of fossil data (from isolated shell valves). New analysis including characters from girdle armature and gill arrangements recovers some genera within the group but also points to the lack of monophyly within the main genus Leptochiton Gray, 1847. Additional characters from molecular data and soft anatomy, used in combination, are clearly needed to resolve questions of chiton relationships. However, the data sets currently available already provide interesting insights into the analytical power of traditional morphology as well as some knowledge about the early evolution and radiation of this group.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current conceptual models of reciprocal interactions linking soil structure, plants and arbuscular mycorrhizal fungi emphasise positive feedbacks among the components of the system. However, dynamical systems with high dimensionality and several positive feedbacks (i.e. mutualism) are prone to instability. Further, organisms such as arbuscular mycorrhizal fungi (AMF) are obligate biotrophs of plants and are considered major biological agents in soil aggregate stabilization. With these considerations in mind, we developed dynamical models of soil ecosystems that reflect the main features of current conceptual models and empirical data, especially positive feedbacks and linear interactions among plants, AMF and the component of soil structure dependent on aggregates. We found that systems become increasingly unstable the more positive effects with Type I functional response (i.e., the growth rate of a mutualist is modified by the density of its partner through linear proportionality) are added to the model, to the point that increasing the realism of models by adding linear effects produces the most unstable systems. The present theoretical analysis thus offers a framework for modelling and suggests new directions for experimental studies on the interrelationship between soil structure, plants and AMF. Non-linearity in functional responses, spatial and temporal heterogeneity, and indirect effects can be invoked on a theoretical basis and experimentally tested in laboratory and field experiments in order to account for and buffer the local instability of the simplest of current scenarios. This first model presented here may generate interest in more explicitly representing the role of biota in soil physical structure, a phenomenon that is typically viewed in a more process- and management-focused context. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The plant actin cytoskeleton is a highly dynamic, fibrous structure essential in many cellular processes including cell division and cytoplasmic streaming. This structure is stimulus responsive, being affected by internal stimuli, by biotic and abiotic stresses mediated in signal transduction pathways by actin-binding proteins. The completion of the Arabidopsis genome sequence has allowed a comparative identification of many actin-binding proteins. However, not all are conserved in plants, which possibly reflects the differences in the processes involved in morphogenesis between plant and other cells. Here we have searched for the Arabidopsis equivalents of 67 animal/fungal actin-binding proteins and show that 36 are not conserved in plants. One protein that is conserved across phylogeny is actin-depolymerizing factor or cofilin and we describe our work on the activity of vegetative tissue and pollen-specific isoforms of this protein in plant cells, concluding that they are functionally distinct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cladobotryum dendroides (= Dactylium dendroides) has hitherto been regarded as the major causal agent of cobweb disease of the cultivated mushroom, Agaricus bisporus. Nucleotide sequence data for the internal transcribed spacer (ITS) regions of four Cladobotryum/Hypomyces species reported to be associated with cobweb disease, however, indicate that the most common pathogen is now C. mycophilum. This cobweb pathogen varies somewhat in conidial septation from published descriptions of C. mycophilum and lacks the distinctive colony odor. ITS sequencing revealed minor nucleotide variation which split isolates of the pathogen into three subgroups, two comprising isolates that were sensitive to methylbenzimidazole carbamate (MBC) fungicides and one comprising MBC-resistant isolates. The MBC-resistant isolates, which were only obtained from Ireland and Great Britain, clustered together strongly in randomly amplified polymorphic DNA (RAPD) PCR analysis, suggesting that they may be clonal. The MBC-sensitive isolates were more diverse. A RAPD fragment of 800 to 900 bp, containing a microsatellite and found in the MBC-resistant isolates, also indicated their clonal nature; the microsatellites of these isolates contained the same number of GA repeats. Smaller, polymorphic microsatellites, similarly comprising GA repeats, in the MBC-sensitive isolates in general correlated with their geographic origin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Identification of Rhizoctonia solani, R. oryzae and R. oryzae-sativae, components of the rice sheath disease complex, is extremely difficult and often inaccurate and as a result may hinder the success of extensive breeding programmes throughout Asia. In this study, primers designed from unique regions within the rDNA internal transcribed spacers have been used to develop a rapid PCR-based diagnostic test to provide an accurate identification of the species on rice. Tests on the specificity of the primers concerned showed that they provide the means for accurate identification of the Rhizoctonia species responsible for sheath diseases in rice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recent report showed significant associations between several SNPs in a previously unknown EST cluster with schizophrenia. (1). The cluster was identified as the human dystrobrevin binding protein 1 gene (DTNBP1) by sequence database comparisons and homology with mouse DTNBP1. (2). However, the linkage disequilibrium (LD) among the SNPs in DTNBP1 as well as the pattern of significant SNP-schizophrenia association was complex. This raised several questions such as the number of susceptibility alleles that may be involved and the size of the region where the actual disease mutation(s) could be located. To address these questions, we performed different single-marker tests on the 12 previously studied and 2 new SNPs in DTNBP1 that were re-scored using an improved procedure, and performed a variety of haplotype analyses. The sample consisted of 268 Irish multiplex families selected for high density of schizophrenia. Results suggested a simple structure where the LD in the target region could be explained by 6 haplotypes that together accounted for 96% of haplotype diversity in the whole sample. From these six, a single high-risk haplotype was identified that showed a significant association with schizophrenia and explained the pattern of significant findings in the analyses with individual markers. This haplotype was 30 kb long, had a large effect, could be measured with two tag SNPs only, had a frequency of 6% in our sample, seemed to be of relatively recent origin in evolutionary terms, and was equally distributed over Ireland. Implications of these findings for follow-up and replication studies are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anaerobic skin commensal Propionibacterium acnes is an underestimated cause of human infections and clinical conditions. Previous studies have suggested a role for the bacterium in lumbar disc herniation and infection. To further investigate this, five biopsy samples were surgically excised from each of 64 patients with lumbar disc herniation. P. acnes and other bacteria were detected by anaerobic culture, followed by biochemical and PCR-based identification. In total, 24/64 (38%) patients had evidence of P. acnes in their excised herniated disc tissue. Using recA and mAb typing methods, 52% of the isolates were type II (50% of culture-positive patients), while type IA strains accounted for 28% of isolates (42% patients). Type III (11% isolates; 21% patients) and type IB strains (9% isolates; 17% patients) were detected less frequently. The MIC values for all isolates were lowest for amoxicillin, ciprofloxacin, erythromycin, rifampicin, tetracycline, and vancomycin (≤1 mg/L). The MIC for fusidic acid was 1-2 mg/L. The MIC for trimethoprim and gentamicin was 2 to ≥4  mg/L. The demonstration that type II and III strains, which are not frequently recovered from skin, predominated within our isolate collection (63%) suggests that the role of P. acnes in lumbar disc herniation should not be readily dismissed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary

1.While plant–fungal interactions are important determinants of plant community assembly and ecosystem functioning, the processes underlying fungal community composition are poorly understood.
2.Here, we studied for the first time the root-associated eumycotan communities in a set of co-occurring plant species of varying relatedness in a species-rich, semi-arid grassland in Germany. The study system provides an opportunity to evaluate the importance of host plants and gradients in soil type and landscape structure as drivers of fungal community structure on a relevant spatial scale. We used 454 pyrosequencing of the fungal internal transcribed spacer region to analyse root-associated eumycotan communities of 25 species within the Asteraceae, which were sampled at different locations within a soil type gradient. We partitioned the variance accounted for by three predictors (host plant phylogeny, spatial distribution and soil type) to quantify their relative roles in determining fungal community composition and used null model analyses to determine whether community composition was influenced by biotic interactions among the fungi.
3.We found a high fungal diversity (156 816 sequences clustered in 1100 operational taxonomic units (OTUs)). Most OTUs belonged to the phylum Ascomycota (35.8%); the most abundant phylotype best-matched Phialophora mustea. Basidiomycota were represented by 18.3%, with Sebacina as most abundant genus. The three predictors explained 30% of variation in the community structure of root-associated fungi, with host plant phylogeny being the most important variance component. Null model analysis suggested that many fungal taxa co-occurred less often than expected by chance, which demonstrates spatial segregation and indicates that negative interactions may prevail in the assembly of fungal communities.
4.Synthesis. The results show that the phylogenetic relationship of host plants is the most important predictor of root-associated fungal community assembly, indicating that fungal colonization of host plants might be facilitated by certain plant traits that may be shared among closely related plant species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pseudomonas aeruginosa is an opportunistic pathogen and an important cause of infection, particularly amongst cystic fibrosis (CF) patients. While specific strains capable of patient-to-patient transmission are known, many infections appear to be caused by unique and unrelated strains. There is a need to understand the relationship between strains capable of colonising the CF lung and the broader set of P. aeruginosa isolates found in natural environments. Here we report the results of a multilocus sequence typing (MLST)-based study designed to understand the genetic diversity and population structure of an extensive regional sample of P. aeruginosa isolates from South East Queensland, Australia. The analysis is based on 501 P. aeruginosa isolates obtained from environmental, animal and human (CF and non-CF) sources with particular emphasis on isolates from the Lower Brisbane River and isolates from CF patients obtained from the same geographical region. Overall, MLST identified 274 different sequence types, of which 53 were shared between one or more ecological settings. Our analysis revealed a limited association between genotype and environment and evidence of frequent recombination. We also found that genetic diversity of P. aeruginosa in Queensland, Australia was indistinguishable from that of the global P. aeruginosa population. Several CF strains were encountered frequently in multiple ecological settings; however, the most frequently encountered CF strains were confined to CF patients. Overall, our data confirm a non-clonal epidemic structure and indicate that most CF strains are a random sample of the broader P. aeruginosa population. The increased abundance of some CF strains in different geographical regions is a likely product of chance colonisation events followed by adaptation to the CF lung and horizontal transmission among patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The opportunistic human pathogen Propionibacterium acnes is comprised of a number of distinct phylogroups, designated types IA1, IA2, IB, IC, II and III, that vary in their production of putative virulence factors, inflammatory potential, as well as biochemical, aggregative and morphological characteristics. Although Multilocus Sequence Typing (MLST) currently represents the gold standard for unambiguous phylogroup classification, and individual strain identification, it is a labour and time-consuming technique. As a consequence, we have developed a multiplex touchdown PCR assay that will, in a single reaction, confirm species identity and phylogeny of an isolate based on its pattern of reaction with six primer sets that target the 16S rRNA (all isolates), ATPase (type IA1, IA2, IC), sodA (type IA2, IB), atpD (type II) and recA (type III) housekeeping genes, as well as a Fic family toxin gene (type IC). When applied to 312 P. acnes isolates previously characterised by MLST, and representing type IA1 (n=145), IA2 (n=20), IB (n=65), IC (n=7), II (n=45) and III (n=30), the multiplex displayed 100% sensitivity and 100% specificity for the detection of isolates within each targeted phylogroup. No cross-reactivity with isolates from other bacterial species was observed. The multiplex assay will provide researchers with a rapid, high-throughput and technically undemanding typing method for epidemiological and phylogenetic investigations. It will facilitate studies investigating the association of lineages with various infections and clinical conditions, as well as a pre-screening tool to maximise the number of genetically diverse isolates selected for downstream, higher resolution sequence-based analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. In addition to abiotic determinants, biotic factors, including competitive, interspecific interactions, limit species’ distributions. Environmental changes in human disturbance, land use and climate are predicted to have widespread impacts on interactions between species, especially in the order Lagomorpha due to the higher latitudes and more extreme environmental conditions they occupy.
2. We reviewed the published literature on interspecific interactions in the order Lagomorpha, and compared the biogeography, macroecology, phylogeny and traits of species known to interact with those of species with no reported interactions, to investigate how projected future environmental change may affect interactions and potentially alter species’ distributions.
3. Thirty-three lagomorph species have competitive interactions reported in the literature; the majority involve hares (Lepus sp.) or the eastern cottontail rabbit (Sylvilagus floridanus). Key regions for interactions are located between 30-50°N of the Equator, and include eastern Asia (southern Russia on the border of Mongolia) and North America (north western USA).
4. Closely related, large-bodied, similarly sized species occurring in regions of human-modified, typically agricultural landscapes, or at high elevations are significantly more likely to have reported competitive interactions than other lagomorph species.
5. We identify species’ traits associated with competitive interactions, and highlight some potential impacts that future environmental change may have on interspecific interactions. Our approach using bibliometric and biological data is widely applicable, and with relatively straightforward methodologies, can provide insights into interactions between species.
6. Our results have implications for predicting species’ responses to global change, and we advise that capturing, parameterizing and incorporating interspecific interactions into analyses (for example, species distribution modelling) may be more important than suggested by the literature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quarter of all lagomorphs (pikas, rabbits, hares and jackrabbits) are threatened with extinction, including several genera that contain only one species. The number of species in a genus correlates with extinction risk in lagomorphs, but not in other mammal groups, and this is concerning because the non-random extinction of small clades disproportionately threatens genetic diversity and phylogenetic history. Here, we use phylogenetic analyses to explore the properties of the lagomorph phylogeny and test if variation in evolution, biogeography and ecology between taxa explains current patterns of diversity and extinction risk. Threat status was not related to body size (and, by inference, its biological correlates), and there was no phylogenetic signal in extinction risk. We show that the lagomorph phylogeny has a similar clade-size distribution to other mammals, and found that genus size was unrelated to present climate, topography, or geographic range size. Extinction risk was greater in areas of higher human population density and negatively correlated with anthropogenically modified habitat. Consistent with this, habitat generalists were less likely to be threatened. Our models did not predict threat status accurately for taxa that experience region-specific threats. We suggest that pressure from human populations is so severe and widespread that it overrides ecological, biological, and geographic variation in extant lagomorphs.