926 resultados para photothermal signal
Resumo:
The ability to transmit and amplify weak signals is fundamental to signal processing of artificial devices in engineering. Using a multilayer feedforward network of coupled double-well oscillators as well as Fitzhugh-Nagumo oscillators, we here investigate the conditions under which a weak signal received by the first layer can be transmitted through the network with or without amplitude attenuation. We find that the coupling strength and the nodes' states of the first layer act as two-state switches, which determine whether the transmission is significantly enhanced or exponentially decreased. We hope this finding is useful for designing artificial signal amplifiers.
Resumo:
The extraction of information about neural activity timing from BOLD signal is a challenging task as the shape of the BOLD curve does not directly reflect the temporal characteristics of electrical activity of neurons. In this work, we introduce the concept of neural processing time (NPT) as a parameter of the biophysical model of the hemodynamic response function (HRF). Through this new concept we aim to infer more accurately the duration of neuronal response from the highly nonlinear BOLD effect. The face validity and applicability of the concept of NPT are evaluated through simulations and analysis of experimental time series. The results of both simulation and application were compared with summary measures of HRF shape. The experiment that was analyzed consisted of a decision-making paradigm with simultaneous emotional distracters. We hypothesize that the NPT in primary sensory areas, like the fusiform gyrus, is approximately the stimulus presentation duration. On the other hand, in areas related to processing of an emotional distracter, the NPT should depend on the experimental condition. As predicted, the NPT in fusiform gyrus is close to the stimulus duration and the NPT in dorsal anterior cingulate gyrus depends on the presence of an emotional distracter. Interestingly, the NPT in right but not left dorsal lateral prefrontal cortex depends on the stimulus emotional content. The summary measures of HRF obtained by a standard approach did not detect the variations observed in the NPT. Hum Brain Mapp, 2012. (C) 2010 Wiley Periodicals, Inc.
Resumo:
A set of predictor variables is said to be intrinsically multivariate predictive (IMP) for a target variable if all properly contained subsets of the predictor set are poor predictors of the. target but the full set predicts the target with great accuracy. In a previous article, the main properties of IMP Boolean variables have been analytically described, including the introduction of the IMP score, a metric based on the coefficient of determination (CoD) as a measure of predictiveness with respect to the target variable. It was shown that the IMP score depends on four main properties: logic of connection, predictive power, covariance between predictors and marginal predictor probabilities (biases). This paper extends that work to a broader context, in an attempt to characterize properties of discrete Bayesian networks that contribute to the presence of variables (network nodes) with high IMP scores. We have found that there is a relationship between the IMP score of a node and its territory size, i.e., its position along a pathway with one source: nodes far from the source display larger IMP scores than those closer to the source, and longer pathways display larger maximum IMP scores. This appears to be a consequence of the fact that nodes with small territory have larger probability of having highly covariate predictors, which leads to smaller IMP scores. In addition, a larger number of XOR and NXOR predictive logic relationships has positive influence over the maximum IMP score found in the pathway. This work presents analytical results based on a simple structure network and an analysis involving random networks constructed by computational simulations. Finally, results from a real Bayesian network application are provided. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We present a simultaneous optical signal-to-noise ratio (OSNR) and differential group delay (DGD) monitoring method based on degree of polarization (DOP) measurements in optical communications systems. For the first time in the literature (to our best knowledge), the proposed scheme is demonstrated to be able to independently and simultaneously extract OSNR and DGD values from the DOP measurements. This is possible because the OSNR is related to maximum DOP, while DGD is related to the ratio between the maximum and minimum values of DOP. We experimentally measured OSNR and DGD in the ranges from 10 to 30 dB and 0 to 90 ps for a 10 Gb/s non-return-to-zero signal. A theoretical analysis of DOP accuracy needed to measure low values of DGD and high OSNRs is carried out, showing that current polarimeter technology is capable of yielding an OSNR measurement within 1 dB accuracy, for OSNR values up to 34 dB, while DGD error is limited to 1.5% for DGD values above 10 ps. For the first time to our knowledge, the technique was demonstrated to accurately measure first-order polarization mode dispersion (PMD) in the presence of a high value of second-order PMD (as high as 2071 ps(2)). (C) 2012 Optical Society of America
MicroRNA miR-146b-5p regulates signal transduction of TGF-beta by repressing SMAD4 in thyroid cancer
Resumo:
MicroRNAs (miRNA) are small non-coding RNAs involved in post-transcriptional gene regulation that have crucial roles in several types of tumors, including papillary thyroid carcinoma (PTC). miR-146b-5p is overexpressed in PTCs and is regarded as a relevant diagnostic marker for this type of cancer. A computational search revealed that miR-146b-5p putatively binds to the 3' untranslated region (UTR) of SMAD4, an important member of the transforming growth factor beta (TGF-beta) signaling pathway. The TGF-beta pathway is a negative regulator of thyroid follicular cell growth, and the mechanism by which thyroid cancer cells evade its inhibitory signal remains unclear. We questioned whether the modulation of the TGF-beta pathway by miR-146b-5p can contribute to thyroid tumorigenesis. Luciferase reporter assay confirmed the direct binding of miR-146b-5p on the SMAD4 3'UTR. Specific inhibition of miR-146b-5p with a locked nucleic acid-modified anti-miR-146b oligonucleotide significantly increased SMAD4 levels in the human papillary carcinoma cell lines, TPC-1 and BCPAP. Moreover, suppression of miR-146b-5p increased the cellular response to the TGF-beta anti-proliferative signal, significantly decreasing the proliferation rate. The overexpression of miR-146b-5p in normal rat follicular PCCL3 cells decreased SMAD4 levels and disrupted TGF-beta signal transduction. MiR-146b-5p overexpression in PCCL3 cells also significantly increased cell proliferation in the absence of thyroid-stimulating hormone and conferred resistance to TGF-beta-mediated cell-cycle arrest. Additionally, the activation of thyroid most common oncogenes RET/PTC3 and BRAF in PCCL3 cells upregulated miR-146b-5p expression. Our results confirm the oncogenic role of miR-146b-5p in thyroid follicular cells and contribute to knowledge regarding the modulation of TGF-beta signal transduction by miRNAs in PTCs. Oncogene (2012) 31, 1910-1922; doi:10.1038/onc.2011.381; published online 29 August 2011
Resumo:
LHC searches for supersymmetry currently focus on strongly produced sparticles, which are copiously produced if gluinos and squarks have masses of a few hundred GeV. However, in supersymmetric models with heavy scalars, as favored by the decoupling solution to the SUSY flavor and CP problems, and m((g) over tilde) greater than or similar to 500 GeV as indicated by recent LHC results, chargino-neutralino ((W) over tilde (+/-)(1)(Z) over tilde (2)) production is the dominant cross section for m((W) over tilde1) similar to m((Z) over tilde2) < m(<(g)over tilde>)/3 at LHC with root s = 7 TeV (LHC7). Furthermore, if m((Z) over tilde1) + (m (Z) over tilde) less than or similar to m((Z) over tilde2) less than or similar to m((Z) over tilde1) + m(h), then (Z) over tilde (2) dominantly decays via (Z) over tilde (2) -> (Z) over tilde (1)Z, while (W) over tilde (1) decays via (W) over tilde (1) -> (Z) over tilde W-1. We investigate the LHC7 reach in the W Z + (sic)T channel (for both leptonic and hadronic decays of the W boson) in models with and without the assumption of gaugino mass universality. In the case of the mSUGRA/CMSSM model with heavy squark masses, the LHC7 discovery reach in the W Z+ (sic)T channel becomes competetive with the reach in the canonical (sic)T + jets channel for integrated luminosities similar to 30 fb(-1). We also present the LHC7 reach for a simplified model with arbitrary m((Z) over tilde1) and m((W) over tilde1) similar to m((Z) over tilde2). Here, we find a reach of up to m((W) over tilde1) similar to 200 (250) GeV for 10 (30) fb(-1).
Resumo:
This work investigates the behavior of the sunspot number and Southern Oscillation Index (SOI) signal recorded in the tree ring time series for three different locations in Brazil: Humaita in Amaznia State, Porto Ferreira in So Paulo State, and Passo Fundo in Rio Grande do Sul State, using wavelet and cross-wavelet analysis techniques. The wavelet spectra of tree ring time series showed signs of 11 and 22 years, possibly related to the solar activity, and periods of 2-8 years, possibly related to El Nio events. The cross-wavelet spectra for all tree ring time series from Brazil present a significant response to the 11-year solar cycle in the time interval between 1921 to after 1981. These tree ring time series still have a response to the second harmonic of the solar cycle (5.5 years), but in different time intervals. The cross-wavelet maps also showed that the relationship between the SOI x tree ring time series is more intense, for oscillation in the range of 4-8 years.
Resumo:
In the CP-violating Minimal Supersymmetric Standard Model, we study the production of a neutralino-chargino pair at the LHC. For their decays into three leptons, we analyze CP asymmetries which are sensitive to the CP phases of the neutralino and chargino sector. We present analytical formulas for the entire production and decay process, and identify the CP-violating contributions in the spin correlation terms. This allows us to define the optimal CP asymmetries. We present a detailed numerical analysis of the cross sections, branching ratios, and the CP observables. For light neutralinos, charginos, and squarks, the asymmetries can reach several 10%. We estimate the discovery potential for the LHC to observe CP violation in the trilepton channel.
Resumo:
The accuracy of ranging measurements depends critically on the knowledge of time delays undergone by signals when retransmitted by a remote transponder and due to propagation effects. A new method determines these delays for every single pulsed signal transmission. It utilizes four ground-based reference stations, synchronized in time and installed at well-known geodesic coordinates and a repeater in space, carried by a satellite, balloon, aircraft, and so forth. Signal transmitted by one of the reference bases is retransmitted by the transponder, received back by the four bases, producing four ranging measurements which are processed to determine uniquely the time delays undergone in every retransmission process. A minimization function is derived comparing repeater's positions referred to at least two groups of three reference bases, providing the signal transit time at the repeater and propagation delays, providing the correct repeater position. The method is applicable to the transponder platform positioning and navigation, time synchronization of remote clocks, and location of targets. The algorithm has been demonstrated by simulations adopting a practical example with the transponder carried by an aircraft moving over bases on the ground.
Resumo:
In this paper, we study the signal amplification of coupled active rotators with phase-shifted coupling. We find that the system's response to the external subthreshold signal can be significantly affected by each of the two types of phase-shifted couplings: identical and non-identical phase-shifted couplings. Moreover, through both theoretical analysis and numerical simulations, we have figured out the optimal phase shift, at which the largest signal amplification is generated. These results show that the phase-shifted coupling plays an important role in regulating the system's response to the subthreshold signal.
Resumo:
Abstract Background Sugarcane is an increasingly economically and environmentally important C4 grass, used for the production of sugar and bioethanol, a low-carbon emission fuel. Sugarcane originated from crosses of Saccharum species and is noted for its unique capacity to accumulate high amounts of sucrose in its stems. Environmental stresses limit enormously sugarcane productivity worldwide. To investigate transcriptome changes in response to environmental inputs that alter yield we used cDNA microarrays to profile expression of 1,545 genes in plants submitted to drought, phosphate starvation, herbivory and N2-fixing endophytic bacteria. We also investigated the response to phytohormones (abscisic acid and methyl jasmonate). The arrayed elements correspond mostly to genes involved in signal transduction, hormone biosynthesis, transcription factors, novel genes and genes corresponding to unknown proteins. Results Adopting an outliers searching method 179 genes with strikingly different expression levels were identified as differentially expressed in at least one of the treatments analysed. Self Organizing Maps were used to cluster the expression profiles of 695 genes that showed a highly correlated expression pattern among replicates. The expression data for 22 genes was evaluated for 36 experimental data points by quantitative RT-PCR indicating a validation rate of 80.5% using three biological experimental replicates. The SUCAST Database was created that provides public access to the data described in this work, linked to tissue expression profiling and the SUCAST gene category and sequence analysis. The SUCAST database also includes a categorization of the sugarcane kinome based on a phylogenetic grouping that included 182 undefined kinases. Conclusion An extensive study on the sugarcane transcriptome was performed. Sugarcane genes responsive to phytohormones and to challenges sugarcane commonly deals with in the field were identified. Additionally, the protein kinases were annotated based on a phylogenetic approach. The experimental design and statistical analysis applied proved robust to unravel genes associated with a diverse array of conditions attributing novel functions to previously unknown or undefined genes. The data consolidated in the SUCAST database resource can guide further studies and be useful for the development of improved sugarcane varieties.
Resumo:
Malaria is responsible for more than 1.5 million deaths each year, especially among children (Snow et al. 2005). Despite of the severity of malaria situation and great effort to the development of new drug targets (Yuan et al. 2011) there is still a relative low investment toward antimalarial drugs. Briefly there are targets classes of antimalarial drugs currently being tested including: kinases, proteases, ion channel of GPCR, nuclear receptor, among others (Gamo et al. 2010). Here we review malaria signal transduction pathways in Red Blood Cells (RBC) as well as infected RBCs and endothelial cells interactions, namely cytoadherence. The last process is thought to play an important role in the pathogenesis of severe malaria. The molecules displayed on the surface of both infected erythrocytes (IE) and vascular endothelial cells (EC) exert themselves as important mediators in cytoadherence, in that they not only induce structural and metabolic changes on both sides, but also trigger multiple signal transduction processes, leading to alteration of gene expression, with the balance between positive and negative regulation determining endothelial pathology during a malaria infection.
Resumo:
Mitogen-activated protein kinase (MAPK) pathways are activated by several stimuli and transduce the signal inside cells, generating diverse responses including cell proliferation, differentiation, migration and apoptosis. Each MAPK cascade comprises a series of molecules, and regulation takes place at different levels. They communicate with each other and with additional pathways, creating a signaling network that is important for cell fate determination. In this review, we focus on ERK, JNK, p38 and ERK5, the major MAPKs, and their interactions with PI3K-Akt, TGFβ/Smad and Wnt/β-catenin pathways. More importantly, we describe how MAPKs regulate cell proliferation and differentiation in the rapidly renewing epithelia that lines the gastrointestinal tract and, finally, we highlight the recent findings on nutritional aspects that affect MAPK transduction cascades.
Resumo:
Less invasive and more effective cancer treatments have been the aim of research in recent decades, e.g. photothermal tumour ablation using gold nanorods. In this study we investigate the cell death pathways activated, and confirm the possibility of CTAB-coated nanoparticle use in vivo. Nanorods were synthesized by the seeding method; some of them were centrifuged and washed to eliminate soluble CTAB. The MTT cytotoxicity test was performed to evaluate cytotoxicity, and the particles' viability after their synthesis was assessed. Once it had been observed that centrifuged and washed nanorods are harmless, and that nanoparticles must be used within 48 h after their synthesis, in vivo hyperthermic treatment was performed.After irradiation, a tumour biopsy was subjected to a chemiluminescence assay to evaluate membrane lipoperoxidation, and to a TRAP assay to evaluate total antioxidant capacity. There was a 47 ºC rise in temperature observed at the tumour site. Animals irradiated with a laser (with or without nanorods) showed similar membrane lipoperoxidation, more intense than in control animals. The antioxidant capacity of experimental animal tumours was elevated. Our results indicate that necrosis is possibly the cell death pathway activated in this case, and that nanorod treatment is worthwhile.
Resumo:
Visual signals, used for communication both within and between species, vary immensely in the forms that they take. How is it that all this splendour has evolved in nature? Since it is the receiver’s preferences that cause selective pressures on signals, elucidating the mechanism behind the response of the signal receiver is vital to gain a closer understanding of the evolutionary process. In my thesis I have therefore investigated how receivers, represented by chickens, Gallus gallus domesticus, respond to different stimuli displayed on a peck-sensitive computer screen. According to the receiver bias hypothesis, animals and humans often express biases when responding to certain stimuli. These biases develop as by-products of how the recognition mechanism categorises and discriminates between stimuli. Since biases are generated from general stimulus processing mechanisms, they occur irrespective of species and type of signal, and it is often possible to predict the direction and intensity of the biases. One of the results from the experiments in my thesis demonstrates that similar experience in different species may generate similar biases. By giving chickens at least some of the experience of human faces as humans presumably have, the chickens subsequently expressed preferences for the same faces as a group of human subjects. Another kind of experience generated a bias for symmetry. This bias developed in the context of training chickens to recognise two mirror images of an asymmetrical stimulus. Untrained chickens and chickens trained on only one of the mirror images expressed no symmetry preferences. The bias produced by the training regime was for a specific symmetrical stimulus which had a strong resemblance to the familiar asymmetrical exemplar, rather than a general preference for symmetry. A further kind of experience, training chickens to respond to some stimuli but not to others, generated a receiver bias for exaggerated stimuli, whereas chickens trained on reversed stimuli developed a bias for less exaggerated stimuli. To investigate the potential of this bias to drive the evolution of signals towards exaggerated forms, a simplified evolutionary process was mimicked. The stimuli variants rejected by the chickens were eliminated, whereas the selected forms were kept and evolved prior to the subsequent display. As a result, signals evolved into exaggerated forms in all tested stimulus dimensions: length, intensity and area, despite the inclusion of a cost to the sender for using increasingly exaggerated signals. The bias was especially strong and persistent for stimuli varying along the intensity dimension where it remained despite extensive training. All the results in my thesis may be predicted by the receiver bias hypothesis. This implies that biases, developed due to stimuli experience, may be significant mechanisms driving the evolution of signal form.