958 resultados para phased arrays
Resumo:
Despite a favourable morphology, anodized and ordered TiO2 nanotubes are incapable of showing electrochromic properties in comparison to many other metal oxide counterparts. To tackle this issue, MoO3 of 5 to 15 nm thickness was electrodeposited onto TiO2 nanotube arrays. A homogenous MoO3 coating was obtained and the crystal phase of the electrodeposited coating was determined to be α-MoO3. The electronic and optical augmentations of the MoO3 coated TiO2 platforms were evaluated through electrochromic measurements. The MoO3/TiO2 system showed a 4-fold increase in optical density over bare TiO2 when the thickness of the MoO3 coating was optimised. The enhancement was ascribed to (a) the α-MoO3 coating reducing the bandgap of the composite material, which shifted the band edge of the TiO2 platform, and subsequently increased the charge carrier transfer of the overall system and (b) the layered morphology of α-MoO3 that increased the intercalation probability and also provided direct pathways for charge carrier transfer.
Resumo:
Receptor tyrosine kinases (RTKs) and their downstream signalling pathways have long been hypothesized to play key roles in melanoma development. A decade ago, evidence was derived largely from animal models, RTK expression studies and detection of activated RAS isoforms in a small fraction of melanomas. Predictions that overexpression of specific RTKs implied increased kinase activity and that some RTKs would show activating mutations in melanoma were largely untested. However, technological advances including rapid gene sequencing, siRNA methods and phospho-RTK arrays now give a more complete picture. Mutated forms of RTK genes including KIT, ERBB4, the EPH and FGFR families and others are known in melanoma. Additional over- or underexpressed RTKs and also protein tyrosine phosphatases (PTPs) have been reported, and activities measured. Complex interactions between RTKs and PTPs are implicated in the abnormal signalling driving aberrant growth and survival in malignant melanocytes, and indeed in normal melanocytic signalling including the response to ultraviolet radiation. Kinases are considered druggable targets, so characterization of global RTK activity in melanoma should assist the rational development of tyrosine kinase inhibitors for clinical use. © 2011 John Wiley & Sons A/S.
Resumo:
Purpose: To investigate the expression pattern of hypoxia-induced proteins identified as being involved in malignant progression of head-and-neck squamous cell carcinoma (HNSCC) and to determine their relationship to tumor pO 2 and prognosis. Methods and Materials: We performed immunohistochemical staining of hypoxia-induced proteins (carbonic anhydrase IX [CA IX], BNIP3L, connective tissue growth factor, osteopontin, ephrin A1, hypoxia inducible gene-2, dihydrofolate reductase, galectin-1, IκB kinase β, and lysyl oxidase) on tumor tissue arrays of 101 HNSCC patients with pretreatment pO 2 measurements. Analysis of variance and Fisher's exact tests were used to evaluate the relationship between marker expression, tumor pO 2, and CA IX staining. Cox proportional hazard model and log-rank tests were used to determine the relationship between markers and prognosis. Results: Osteopontin expression correlated with tumor pO 2 (Eppendorf measurements) (p = 0.04). However, there was a strong correlation between lysyl oxidase, ephrin A1, and galectin-1 and CA IX staining. These markers also predicted for cancer-specific survival and overall survival on univariate analysis. A hypoxia score of 0-5 was assigned to each patient, on the basis of the presence of strong staining for these markers, whereby a higher score signifies increased marker expression. On multivariate analysis, increasing hypoxia score was an independent prognostic factor for cancer-specific survival (p = 0.015) and was borderline significant for overall survival (p = 0.057) when adjusted for other independent predictors of outcomes (hemoglobin and age). Conclusions: We identified a panel of hypoxia-related tissue markers that correlates with treatment outcomes in HNSCC. Validation of these markers will be needed to determine their utility in identifying patients for hypoxia-targeted therapy. © 2007 Elsevier Inc. All rights reserved.
Resumo:
It is known that 22-nucleotide (nt) microRNAs (miRNAs) derived from asymmetric duplexes trigger phased small-interfering RNA (phasiRNA) production from complementary targets. Here we investigate the efficacy of 22-nt artificial miRNA (amiRNA)-mediated RNA silencing relative to conventional hairpin RNA (hpRNA) and 21-nt amiRNA-mediated RNA silencing. CHALCONE SYNTHASE (CHS) was selected as a target in Arabidopsis thaliana due to the obvious and non-lethal loss of anthocyanin accumulation upon widespread RNA silencing. Over-expression of CHS in the pap1-D background facilitated visual detection of both local and systemic RNA silencing. RNA silencing was initiated in leaf tissues from hpRNA and amiRNA plant expression vectors under the control of an Arabidopsis RuBisCo small subunit 1A promoter (SSU). In this system, hpRNA expression triggered CHS silencing in most leaf tissues but not in roots or seed coats. Similarly, 21-nt amiRNA expression from symmetric miRNA/miRNA* duplexes triggered CHS silencing in all leaf tissues but not in roots or seed coats. However, 22-nt amiRNA expression from an asymmetric duplex triggered CHS silencing in all tissues, including roots and seed coats, in the majority of plant lines. This widespread CHS silencing required RNA-DEPENDENT RNA POLYMERASE6-mediated accumulation of phasiRNAs from the endogenous CHS transcript. These results demonstrate the efficacy of asymmetric 22-nt amiRNA-directed RNA silencing and associated phasiRNA production and activity, in mediating widespread RNA silencing of an endogenous target gene. Asymmetric 22-nt amiRNA-directed RNA silencing requires little modification of existing amiRNA technology and is expected to be effective in suppressing other genes and/or members of gene families.
Resumo:
This paper explores the use of subarrays as array elements. Benefits of such a concept include improved gain in any direction without significantly increasing the overall size of the array and enhanced pattern control. The architecture for an array of subarrays will be discussed via a systems approach. Individual system designs are explored in further details and proof of principle is illustrated through a manufactured examples.
Resumo:
Early diagnosis and the ability to predict the most relevant treatment option for individuals is essential to improve clinical outcomes for non-small cell lung cancer (NSCLC) patients. Adenocarcinoma (ADC), a subtype of NSCLC, is the single biggest cancer killer and therefore an urgent need to identify minimally invasive biomarkers to enable early diagnosis. Recent studies, by ourselves and others, indicate that circulating miRNA s have potential as biomarkers. Here we applied global profiling approaches in serum from patients with ADC of the lung to explore if miRNA s have potential as diagnostic biomarkers. This study involved RNA isolation from 80 sera specimens including those from ADC patients (equal numbers of stages 1, 2, 3, and 4) and age- and gender-matched controls (n = 40 each). Six hundred and sixty-seven miRNA s were co-analyzed in these specimens using TaqMan low density arrays and qPCR validation using individual miRNA s. Overall, approximately 390 and 370 miRNA s were detected in ADC and control sera, respectively. A group of 6 miRNA s, miR-30c-1* (AU C = 0.74; P < 0.002), miR-616(AU C = 0.71; P = 0.001), miR-146b-3p (AU C = 0.82; P < 0.0001), miR-566 (AU C = 0.80; P < 0.0001), miR-550 (AU C = 0.72; P = 0.0006), and miR-939 (AU C = 0.82; P < 0.0001) was found to be present at substantially higher levels in ADC compared with control sera. Conversely, miR-339-5p and miR-656 were detected at substantially lower levels in ADC sera (co-analysis resulting in AU C = 0.6; P = 0.02). Differences in miRNA profile identified support circulating miRNA s having potential as diagnostic biomarkers for ADC. More extensive studies of ADC and control serum specimens are warranted to independently validate the potential clinical relevance of these miRNA s as minimally invasive biomarkers for ADC.
Resumo:
Reconfigurable computing devices can increase the performance of compute intensive algorithms by implementing application specific co-processor architectures. The power cost for this performance gain is often an order of magnitude less than that of modern CPUs and GPUs. Exploiting the potential of reconfigurable devices such as Field-Programmable Gate Arrays (FPGAs) is typically a complex and tedious hardware engineering task. Re- cently the major FPGA vendors (Altera, and Xilinx) have released their own high-level design tools, which have great potential for rapid development of FPGA based custom accelerators. In this paper, we will evaluate Altera’s OpenCL Software Development Kit, and Xilinx’s Vivado High Level Sythesis tool. These tools will be compared for their per- formance, logic utilisation, and ease of development for the test case of a Tri-diagonal linear system solver.
Resumo:
The purpose of this paper is to empirically examine the state of cloud computing adoption in Australia. I specifically focus on the drivers, risks, and benefits of cloud computing from the perspective of IT experts and forensic accountants. I use thematic analysis of interview data to answer the research questions of the study. The findings suggest that cloud computing is increasingly gaining foothold in many sectors due to its advantages such as flexibility and the speed of deployment. However, security remains an issue and therefore its adoption is likely to be selective and phased. Of particular concern are the involvement of third parties and foreign jurisdictions, which in the event of damage may complicate litigation and forensic investigations. This is one of the first empirical studies that reports on cloud computing adoption and experiences in Australia.
Resumo:
The on-demand printing of living cells using inkjet technologies has recently been demonstrated and allows for the controlled deposition of cells in microarrays. Here, we show that such arrays can be interrogated directly by robot-controlled liquid microextraction coupled with chip-based nanoelectospray mass spectrometry. Such automated analyses generate a profile of abundant membrane lipids that are characteristic of cell type. Significantly, the spatial control in both deposition and extraction steps combined with the sensitivity of the mass spectrometric detection allows for robust molecular profiling of individual cells. © 2012 American Chemical Society.
Resumo:
The structures of the ammonium salts of 3,5-dinitrobenzoic acid, NH4+ C7H3N2O6- (I), 4-nitrobenzoic acid, NH4+ C7H4N2O4- . 2H2O (II) and 2,4-dichlorobenzoic acid, NH4+ C7H3Cl2O2- . 0.5H2O (III), have been determined and their hydrogen-bonded structures are described. All salts form hydrogen-bonded polymeric structures, three-dimensional in (I) and two-dimensional in (II) and (III). With (I), a primary cation-anion cyclic association is formed [graph set R3/4(10)] through N-H...O hydrogen bonds, involving a carboxyl O,O' group on one side and a single carboxyl O-atom on the other. Structure extension involves both N-H...O hydrogen bonds to both carboxyl and nitro O-atom acceptors. With structure (II), the primary inter-species interactions and structure extension into layers lying parallel to (0 0 1) are through conjoined cyclic hydrogen-bonding motifs: R3/4(10) [one cation, a carboxyl (O,O') group and two water molecules] and centrosymmetric R2/4(8) [two cations and two water molecules]. The structure of (III) also has conjoined R3/4(10) and centrosymmetric R2/4(8) motifs in the layered structure but these differ in that he first involves one cation, a carboxyl (O,O') as well as a carboxyl (O) group and one water molecule, the second, two cations and two carboxyl O-groups. The layers lie parallel to (1 0 0). The structures of the salt hydrates (II) and (III) reported in this work, giving two-dimensional layered arrays through conjoined hydrogen-bonded nets provide further illustrations of a previously indicated trend among ammonium salts of carboxylic acids, but the anhydrous three-dimensional structure of (I) is inconsistent.
Resumo:
Bit-stream-based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. This study presents a novel family of three-phase space vector modulators, which are based on the bit-stream technique and suitable for three-phase inverter systems. Each of the proposed modulators simultaneously converts a two-phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulators do not require carrier oscillators, trigonometric functions or, in some cases, sector detectors. A complete three-phase modulator can be implemented in as few as 102 logic elements. The performance of the proposed modulators is compared through simulation and experimental testing of a 6 kW, three-phase DC-to-AC inverter. Subject to limits on the modulation index, the proposed modulators deliver spread-spectrum output currents with total harmonic distortion comparable to a standard carrier-based space vector pulse width modulator.
Resumo:
Numerous initiatives have been employed around the world in order to address rising greenhouse gas (GHG) emissions originating from the transport sector. These measures include: travel demand management (congestion‐charging), increased fuel taxes, alternative fuel subsidies and low‐emission vehicle (LEV) rebates. Incentivizing the purchase of LEVs has been one of the more prevalent approaches in attempting to tackle this global issue. LEVs, whilst having the advantage of lower emissions and, in some cases, more efficient fuel consumption, also bring the downsides of increased purchase cost, reduced convenience of vehicle fuelling, and operational uncertainty. To stimulate demand in the face of these challenges, various incentive‐based policies, such as toll exemptions, have been used by national and local governments to encourage the purchase of these types of vehicles. In order to address rising GHG emissions in Stockholm, and in line with the Swedish Government’s ambition to operate a fossil free fleet by 2030, a number of policies were implemented targeting the transport sector. Foremost amongst these was the combination of a congestion charge – initiated to discourage emissions‐intensive travel – and an exemption from this charge for some LEVs, established to encourage a transition towards a ‘green’ vehicle fleet. Although both policies shared the aim of reducing GHG emissions, the exemption for LEVs carried the risk of diminishing the effectiveness of the congestion charging scheme. As the number of vehicle owners choosing to transition to an eligible LEV increased, the congestion‐reduction effectiveness of the charging scheme weakened. In fact, policy makers quickly recognized this potential issue and consequently phased out the LEV exemption less than 18 months after its introduction (1). Several studies have investigated the demand for LEVs through stated‐preference (SP) surveys across multiple countries, including: Denmark (2), Germany (3, 4), UK (5), Canada (6), USA (7, 8) and Australia (9). Although each of these studies differed in approach, all involved SP surveys where differing characteristics between various types of vehicles, including LEVs, were presented to respondents and these respondents in turn made hypothetical decisions about which vehicle they would be most likely to purchase. Although these studies revealed a number of interesting findings in regards to the potential demand for LEVs, they relied on SP data. In contrast, this paper employs an approach where LEV choice is modelled by taking a retrospective view and by using revealed preference (RP) data. By examining the revealed preferences of vehicle owners in Stockholm, this study overcomes one of the principal limitations of SP data, namely that stated preferences may not in fact reflect individuals’ actual choices, such as when cost, time, and inconvenience factors are real rather than hypothetical. This paper’s RP approach involves modelling the characteristics of individuals who purchased new LEVs, whilst estimating the effect of the congestion charging exemption upon choice probabilities and subsequent aggregate demand. The paper contributes to the current literature by examining the effectiveness of a toll exemption under revealed preference conditions, and by assessing the total effect of the policy based on key indicators for policy makers, including: vehicle owner home location, commuting patterns, number of children, age, gender and income. Extended Abstract Submission for Kuhmo Nectar Conference 2014 2 The two main research questions motivating this study were: Which individuals chose to purchase a new LEV in Stockholm in 2008?; and, How did the congestion charging exemption affect the aggregate demand for new LEVs in Stockholm in 2008? In order to answer these research questions the analysis was split into two stages. Firstly, a multinomial logit (MNL) model was used to identify which demographic characteristics were most significantly related to the purchase of an LEV over a conventional vehicle. The three most significant variables were found to be: intra‐cordon residency (positive); commuting across the cordon (positive); and distance of residence from the cordon (negative). In order to estimate the effect of the exemption policy on vehicle purchase choice, the model included variables to control for geographic differences in preferences, based on the location of the vehicle owners’ homes and workplaces in relation to the congestion‐charging cordon boundary. These variables included one indicator representing commutes across the cordon and another indicator representing intra‐cordon residency. The effect of the exemption policy on the probability of purchasing LEVs was estimated in the second stage of the analysis by focusing on the groups of vehicle owners that were most likely to have been affected by the policy i.e. those commuting across the cordon boundary (in both directions). Given the inclusion of the indicator variable representing commutes across the cordon, it is assumed that the estimated coefficient of this variable captures the effect of the exemption policy on the utility of choosing to purchase an exempt LEV for these two groups of vehicle owners. The intra‐cordon residency indicator variable also controls for differences between the two groups, based upon direction of travel across the cordon boundary. A counter‐hypothesis to this assumption is that the coefficient of the variable representing commuting across the cordon boundary instead only captures geo‐demographic differences that lead to variations in LEV ownership across the different groups of vehicle owners in relation to the cordon boundary. In order to address this counter‐hypothesis, an additional analysis was performed on data from a city with a similar geodemographic pattern to Stockholm, Gothenburg ‐ Sweden’s second largest city. The results of this analysis provided evidence to support the argument that the coefficient of the variable representing commutes across the cordon was capturing the effect of the exemption policy. Based upon this framework, the predicted vehicle type shares were calculated using the estimated coefficients of the MNL model and compared with predicted vehicle type shares from a simulated scenario where the exemption policy was inactive. This simulated scenario was constructed by setting the coefficient for the variable representing commutes across the cordon boundary to zero for all observations to remove the utility benefit of the exemption policy. Overall, the procedure of this second stage of the analysis led to results showing that the exemption had a substantial effect upon the probability of purchasing and aggregate demand for exempt LEVs in Stockholm during 2008. By making use of unique evidence of revealed preferences of LEV owners, this study identifies the common characteristics of new LEV owners and estimates the effect of Stockholm's congestion charging exemption upon the demand for new LEVs during 2008. It was found that the variables that had the greatest effect upon the choice of purchasing an exempt LEV included intra‐cordon residency (positive), distance of home from the cordon (negative), and commuting across the cordon (positive). It was also determined that owners under the age of 30 years preferred non‐exempt LEVs (low CO2 LEVs), whilst those over the age of 30 years preferred electric vehicles. In terms of electric vehicles, it was apparent that those individuals living within the city had the highest propensity towards purchasing this vehicle type. A negative relationship between choosing an electric vehicle and the distance of an individuals’ residency from the cordon was also evident. Overall, the congestion charging exemption was found to have increased the share of exempt LEVs in Stockholm by 1.9%, with, as expected, a much stronger effect on those commuting across the boundary, with those living inside the cordon having a 13.1% increase, and those owners living outside the cordon having a 5.0% increase. This increase in demand corresponded to an additional 538 (+/‐ 93; 95% C.I.) new exempt LEVs purchased in Stockholm during 2008 (out of a total of 5 427; 9.9%). Policy makers can take note that an incentive‐based policy can increase the demand for LEVs and appears to be an appropriate approach to adopt when attempting to reduce transport emissions through encouraging a transition towards a ‘green’ vehicle fleet.
Resumo:
This thesis is a study of new design methods for allowing evolutionary algorithms to be more effectively utilised in aerospace optimisation applications where computation needs are high and computation platform space may be restrictive. It examines the applicability of special hardware computational platforms known as field programmable gate arrays and shows that with the right implementation methods they can offer significant benefits. This research is a step forward towards the advancement of efficient and highly automated aircraft systems for meeting compact physical constraints in aerospace platforms and providing effective performance speedups over traditional methods.
Resumo:
This paper presents a novel place recognition algorithm inspired by the recent discovery of overlapping and multi-scale spatial maps in the rodent brain. We mimic this hierarchical framework by training arrays of Support Vector Machines to recognize places at multiple spatial scales. Place match hypotheses are then cross-validated across all spatial scales, a process which combines the spatial specificity of the finest spatial map with the consensus provided by broader mapping scales. Experiments on three real-world datasets including a large robotics benchmark demonstrate that mapping over multiple scales uniformly improves place recognition performance over a single scale approach without sacrificing localization accuracy. We present analysis that illustrates how matching over multiple scales leads to better place recognition performance and discuss several promising areas for future investigation.
Resumo:
We report on the chemical synthesis of the arrays of silicon oxide nanodots and their self-organization on the surface via physical processes triggered by surface charges. The method based on chemically active oxygen plasma leads to the rearrangement of nanostructures and eventually to the formation of groups of nanodots. This behavior is explained in terms of the effect of electric field on the kinetics of surface processes. The direct measurements of the electric charges on the surface demonstrate that the charge correlates with the density and arrangement of nanodots within the array. Extensive numerical simulations support the proposed mechanism and prove a critical role of the electric charges in the self-organization. This simple and environment-friendly self-guided process could be used in the chemical synthesis of large arrays of nanodots on semiconducting surfaces for a variety of applications in catalysis, energy conversion and storage, photochemistry, environmental and biosensing, and several others.