938 resultados para peoples
Resumo:
In this paper we propose a fully parallel 64K point radix-4(4) FFT processor. The radix-4(4) parallel unrolled architecture uses a novel radix-4 butterfly unit which takes all four inputs in parallel and can selectively produce one out of the four outputs. The radix-4(4) block can take all 256 inputs in parallel and can use the select control signals to generate one out of the 256 outputs. The resultant 64K point FFT processor shows significant reduction in intermediate memory but with increased hardware complexity. Compared to the state-of-art implementation 5], our architecture shows reduced latency with comparable throughput and area. The 64K point FFT architecture was synthesized using a 130nm CMOS technology which resulted in a throughput of 1.4 GSPS and latency of 47.7 mu s with a maximum clock frequency of 350MHz. When compared to 5], the latency is reduced by 303 mu s with 50.8% reduction in area.
Resumo:
We develop noise robust features using Gammatone wavelets derived from the popular Gammatone functions. These wavelets incorporate the characteristics of human peripheral auditory systems, in particular the spatially-varying frequency response of the basilar membrane. We refer to the new features as Gammatone Wavelet Cepstral Coefficients (GWCC). The procedure involved in extracting GWCC from a speech signal is similar to that of the conventional Mel-Frequency Cepstral Coefficients (MFCC) technique, with the difference being in the type of filterbank used. We replace the conventional mel filterbank in MFCC with a Gammatone wavelet filterbank, which we construct using Gammatone wavelets. We also explore the effect of Gammatone filterbank based features (Gammatone Cepstral Coefficients (GCC)) for robust speech recognition. On AURORA 2 database, a comparison of GWCCs and GCCs with MFCCs shows that Gammatone based features yield a better recognition performance at low SNRs.
Resumo:
Given a connected outerplanar graph G of pathwidth p, we give an algorithm to add edges to G to get a supergraph of G, which is 2-vertex-connected, outerplanar and of pathwidth O(p). This settles an open problem raised by Biedl 1], in the context of computing minimum height planar straight line drawings of outerplanar graphs, with their vertices placed on a two-dimensional grid. In conjunction with the result of this paper, the constant factor approximation algorithm for this problem obtained by Biedl 1] for 2-vertex-connected outerplanar graphs will work for all outer planar graphs. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Electromagnetic Interference (EMI) noise is one of the major issues during the design of the grid-tied power converters. Presence of high dv/dt in Common Mode (CM) voltage, excites the parasitic capacitances and causes injection of narrow peaky current to ground. This results in high EMI noise level. A topology consisting of a single phase PWM-rectifier with LCL filter, utilising bipolar PWM method is proposed which reduces the EMI noise level by more than 30dB. This filter topology is shown to be insensitive to the switching delays between the legs of the inverter. The proposed topology eliminates high dv/dt from the dc-bus CM voltage by making it sinusoidal. Hence, the high frequency CM current injection to ground is minimized.
Resumo:
A new mixed-mode compression fracture specimen, obliquely oriented edge cracked semicircular disk (OECSD) is analyzed by extending pure opening mode configuration of edge cracked semicircular disk (ECSD) under Hertzian compression. Photoelastic experiments are conducted on two different specimens of OECSD of same size and different crack lengths and inclinations. Finite element method (FEM) is used to solve a number of cases of the problem varying crack length and crack inclination. FE results show a good match with experiments. Inclination of edge crack in OECSD can be so made as to obtain any mode-mixity ratio between zero and one and beyond for any crack length. The new specimen can be used for fracture testing under compression more conveniently than the existing ones in several ways.
Resumo:
The correctness of a hard real-time system depends its ability to meet all its deadlines. Existing real-time systems use either a pure real-time scheduler or a real-time scheduler embedded as a real-time scheduling class in the scheduler of an operating system (OS). Existing implementations of schedulers in multicore systems that support real-time and non-real-time tasks, permit the execution of non-real-time tasks in all the cores with priorities lower than those of real-time tasks, but interrupts and softirqs associated with these non-real-time tasks can execute in any core with priorities higher than those of real-time tasks. As a result, the execution overhead of real-time tasks is quite large in these systems, which, in turn, affects their runtime. In order that the hard real-time tasks can be executed in such systems with minimal interference from other Linux tasks, we propose, in this paper, an integrated scheduler architecture, called SchedISA, which aims to considerably reduce the execution overhead of real-time tasks in these systems. In order to test the efficacy of the proposed scheduler, we implemented partitioned earliest deadline first (P-EDF) scheduling algorithm in SchedISA on Linux kernel, version 3.8, and conducted experiments on Intel core i7 processor with eight logical cores. We compared the execution overhead of real-time tasks in the above implementation of SchedISA with that in SCHED_DEADLINE's P-EDF implementation, which concurrently executes real-time and non-real-time tasks in Linux OS in all the cores. The experimental results show that the execution overhead of real-time tasks in the above implementation of SchedISA is considerably less than that in SCHED_DEADLINE. We believe that, with further refinement of SchedISA, the execution overhead of real-time tasks in SchedISA can be reduced to a predictable maximum, making it suitable for scheduling hard real-time tasks without affecting the CPU share of Linux tasks.
Resumo:
Optimal control of traffic lights at junctions or traffic signal control (TSC) is essential for reducing the average delay experienced by the road users amidst the rapid increase in the usage of vehicles. In this paper, we formulate the TSC problem as a discounted cost Markov decision process (MDP) and apply multi-agent reinforcement learning (MARL) algorithms to obtain dynamic TSC policies. We model each traffic signal junction as an independent agent. An agent decides the signal duration of its phases in a round-robin (RR) manner using multi-agent Q-learning with either is an element of-greedy or UCB 3] based exploration strategies. It updates its Q-factors based on the cost feedback signal received from its neighbouring agents. This feedback signal can be easily constructed and is shown to be effective in minimizing the average delay of the vehicles in the network. We show through simulations over VISSIM that our algorithms perform significantly better than both the standard fixed signal timing (FST) algorithm and the saturation balancing (SAT) algorithm 15] over two real road networks.
Resumo:
During a lightning strike to ground or structure nearby, currents are induced in all conducting structures including tall towers. As compared to the case of a direct strike, these induced currents will be of much lower amplitude, however, appear more frequently. A quantitative knowledge on these induced currents will be of interest to instrumented and communication towers. A preliminary analysis on the characteristics of the induced currents was reported in an earlier work 1], which employed simplifications by neglecting the induced charge on the tower and also the contribution from the upward connecting leader. This work aims to make further progress by considering all the essential aspects in ascertaining the induced currents. For determining the field produced by the developing return stroke, a macro-physical model for the return stroke is employed and for the evaluation of the induced currents, an in-house time domain numerical electromagnetic code along with suitable modifications for incorporating the dynamics of upward leader is employed.
Resumo:
UHV power transmission lines have high probability of shielding failure due to their higher height, larger exposure area and high operating voltage. Lightning upward leader inception and propagation is an integral part of lightning shielding failure analysis and need to be studied in detail. In this paper a model for lightning attachment has been proposed based on the present knowledge of lightning physics. Leader inception is modeled based on the corona charge present near the conductor region and the propagation model is based on the correlation between the lightning induced voltage on the conductor and the drop along the upward leader channel. The inception model developed is compared with previous inception models and the results obtained using the present and previous models are comparable. Lightning striking distances (final jump) for various return stroke current were computed for different conductor heights. The computed striking distance values showed good correlation with the values calculated using the equation proposed by the IEEE working group for the applicable conductor heights of up to 8 m. The model is applied to a 1200 kV AC power transmission line and inception of the upward leader is analyzed for this configuration.
Resumo:
Lightning strike to instrumented and communication towers can be a source of electromagnetic disturbance to the system connected. Long cables running on these towers can get significant induction to their sheath/core, which would then couple to the connected equipments. For a quantitative analysis of the situation, suitable theoretical analysis is necessary. Due to the dominance of the transverse magnetic mode during the fast rising portion of the stroke current, which is the period of significant induction, a full wave solution based on Maxwell's equations is necessary. Owing to the large geometric aspect ratio of tower lattice elements and for feasibility of a numerical solution, the thin-wire formulation for the electric field integral equation is generally adopted. However, the classical thin-wire formulation is not set for handling non-cylindrical conductors like tower lattice elements and the proximity of other conductors. The present work investigates further into a recently proposed method for handling such a situation and optimizes the numerical solution approach.
Resumo:
For a multilayered specimen, the back-scattered signal in frequency-domain optical-coherence tomography (FDOCT) is expressible as a sum of cosines, each corresponding to a change of refractive index in the specimen. Each of the cosines represent a peak in the reconstructed tomogram. We consider a truncated cosine series representation of the signal, with the constraint that the coefficients in the basis expansion be sparse. An l(2) (sum of squared errors) data error is considered with an l(1) (summation of absolute values) constraint on the coefficients. The optimization problem is solved using Weiszfeld's iteratively reweighted least squares (IRLS) algorithm. On real FDOCT data, improved results are obtained over the standard reconstruction technique with lower levels of background measurement noise and artifacts due to a strong l(1) penalty. The previous sparse tomogram reconstruction techniques in the literature proposed collecting sparse samples, necessitating a change in the data capturing process conventionally used in FDOCT. The IRLS-based method proposed in this paper does not suffer from this drawback.
Resumo:
We address the problem of separating a speech signal into its excitation and vocal-tract filter components, which falls within the framework of blind deconvolution. Typically, the excitation in case of voiced speech is assumed to be sparse and the vocal-tract filter stable. We develop an alternating l(p) - l(2) projections algorithm (ALPA) to perform deconvolution taking into account these constraints. The algorithm is iterative, and alternates between two solution spaces. The initialization is based on the standard linear prediction decomposition of a speech signal into an autoregressive filter and prediction residue. In every iteration, a sparse excitation is estimated by optimizing an l(p)-norm-based cost and the vocal-tract filter is derived as a solution to a standard least-squares minimization problem. We validate the algorithm on voiced segments of natural speech signals and show applications to epoch estimation. We also present comparisons with state-of-the-art techniques and show that ALPA gives a sparser impulse-like excitation, where the impulses directly denote the epochs or instants of significant excitation.
Resumo:
In big data image/video analytics, we encounter the problem of learning an over-complete dictionary for sparse representation from a large training dataset, which cannot be processed at once because of storage and computational constraints. To tackle the problem of dictionary learning in such scenarios, we propose an algorithm that exploits the inherent clustered structure of the training data and make use of a divide-and-conquer approach. The fundamental idea behind the algorithm is to partition the training dataset into smaller clusters, and learn local dictionaries for each cluster. Subsequently, the local dictionaries are merged to form a global dictionary. Merging is done by solving another dictionary learning problem on the atoms of the locally trained dictionaries. This algorithm is referred to as the split-and-merge algorithm. We show that the proposed algorithm is efficient in its usage of memory and computational complexity, and performs on par with the standard learning strategy, which operates on the entire data at a time. As an application, we consider the problem of image denoising. We present a comparative analysis of our algorithm with the standard learning techniques that use the entire database at a time, in terms of training and denoising performance. We observe that the split-and-merge algorithm results in a remarkable reduction of training time, without significantly affecting the denoising performance.
Resumo:
The effect of multiplicative noise on a signal when compared with that of additive noise is very large. In this paper, we address the problem of suppressing multiplicative noise in one-dimensional signals. To deal with signals that are corrupted with multiplicative noise, we propose a denoising algorithm based on minimization of an unbiased estimator (MURE) of meansquare error (MSE). We derive an expression for an unbiased estimate of the MSE. The proposed denoising is carried out in wavelet domain (soft thresholding) by considering time-domain MURE. The parameters of thresholding function are obtained by minimizing the unbiased estimator MURE. We show that the parameters for optimal MURE are very close to the optimal parameters considering the oracle MSE. Experiments show that the SNR improvement for the proposed denoising algorithm is competitive with a state-of-the-art method.
Resumo:
Local polynomial approximation of data is an approach towards signal denoising. Savitzky-Golay (SG) filters are finite-impulse-response kernels, which convolve with the data to result in polynomial approximation for a chosen set of filter parameters. In the case of noise following Gaussian statistics, minimization of mean-squared error (MSE) between noisy signal and its polynomial approximation is optimum in the maximum-likelihood (ML) sense but the MSE criterion is not optimal for non-Gaussian noise conditions. In this paper, we robustify the SG filter for applications involving noise following a heavy-tailed distribution. The optimal filtering criterion is achieved by l(1) norm minimization of error through iteratively reweighted least-squares (IRLS) technique. It is interesting to note that at any stage of the iteration, we solve a weighted SG filter by minimizing l(2) norm but the process converges to l(1) minimized output. The results show consistent improvement over the standard SG filter performance.