939 resultados para penicillin binding protein 2a
Resumo:
Despite its large impact on the individual and society, we currently have only a rudimentary understanding of the biological basis of Major Depressive Disorder, even less so in adolescent populations. This thesis focuses on two research questions. First, how do adolescents with depression differ from adolescents who have never been depressed on (1a) brain morphology and (1b) DNA methylation? We studied differences in the fronto-limbic system (a collection of areas responsible for emotion regulation) and methylation at the serotonin transporter (SLC6A4) and FK506 binding protein gene (FKBP5) genes (two genes strongly linked to stress regulation and depression). Second, how does childhood trauma, which is known to increase risk for depression, affect (2a) brain development and (2b) SLC6A4 and FKBP5 methylation? Further, (2c) how might DNA methylation explain how trauma affects brain development in depression? We studied these questions in 24 adolescent depressed patients and 21 controls. We found that (1a) depressed adolescents had decreased left precuneus volume and greater volume of the left precentral gyrus compared to controls; however, no differences in fronto-limbic morphology were identified. Moreover, (1b) individuals with depression had lower levels of FKBP5 methylation than controls. In line with our second hypothesis (2a) greater levels of trauma were associated with decreased volume of a number of fronto-limbic regions. Further, we found that (2b) greater trauma was associated with decreased SLC6A4, but not FKBP5, methylation. Finally, (2c) greater FKBP5, but not SLC6A4, methylation was associated with decreased volume of a number of fronto-limbic regions. The results of this study suggest an association among trauma, DNA methylation and brain development in youth, but the direction of these relationships appears to be inconsistent. Future studies using a longitudinal design will be necessary to clarify these results and help us understand how the brain and epigenome change over time in depressed youth.
Resumo:
Resumo:
The auxin receptor ABP1 directly regulates plasma membrane activities including the number of PIN-formed (PIN) proteins and auxin efflux transport. Red light (R) mediated by phytochromes regulates the steady-state level of ABP1 and auxin-inducible growth capacity in etiolated tissues but, until now, there has been no genetic proof that ABP1 and phytochrome regulation of elongation share a common mechanism for organ elongation. In far red (FR)-enriched light, hypocotyl lengths were larger in the abp1-5 and abp1/ABP1 mutants, but not in tir1-1, a null mutant of the TRANSPORT-INHIBITOR-RESPONSE1 auxin receptor. The polar auxin transport inhibitor naphthylphthalamic acid (NPA) decreased elongation in the low R: FR light-enriched white light (WL) condition more strongly than in the high red: FR light-enriched condition WL suggesting that auxin transport is an important condition for FR-induced elongation. The addition of NPA to hypocotyls grown in R-and FR-enriched light inhibited hypocotyl gravitropism to a greater extent in both abp1 mutants and in phyB-9 and phyA-211 than the wild-type hypocotyl, arguing for decreased phytochrome action in conjunction with auxin transport in abp1 mutants. Transcription of FR-enriched light-induced genes, including several genes regulated by auxin and shade, was reduced 3-5-fold in abp1-5 compared with Col and was very low in abp1/ABP1. In the phyB-9 mutant the expression of these reporter genes was 5-15-fold lower than in Col. In tir1-1 and the phyA-211 mutants shade-induced gene expression was greatly attenuated. Thus, ABP1 directly or indirectly participates in auxin and light signalling.
Resumo:
Building and maintaining muscle is critical to the quality of life for adults and elderly. Physical activity and nutrition are important factors for long-term muscle health. In particular, dietary protein – including protein distribution and quality – are under-appreciated determinants of muscle health for adults. The most unequivocal evidence for the benefit of optimal dietary protein at individual meals is derived from studies of weight management. During the catabolic condition of weight loss, higher protein diets attenuate loss of lean tissue and partition weight loss to body fat when compared with commonly recommended high carbohydrate, low protein diets. Muscle protein turnover is a continuous process in which proteins are degraded, and replaced by newly synthesized proteins. Muscle growth occurs when protein synthesis exceeds protein degradation. Regulation of protein synthesis is complex, with multiple signals influencing this process. The mammalian target of rapamycin (mTORC1) pathway has been identified as a particularly important regulator of protein synthesis, via stimulation of translation initiation. Key regulatory points of translation initiation effected by mTORC1 include assembly of the eukaryotic initiation factor 4F (eIF4F) complex and phosphorylation of the 70 kilodalton ribosomal protein S6 kinase (S6K1). Assembly of the eIF4F initiation complex involves phosphorylation of the inhibitory eIF4E binding protein-1 (4E-BP1), which releases the initiation factor eIF4E and allows it to bind with eIF4G. Binding of eIF4E with eIF4G promotes preparation of the mRNA for binding to the 43S pre-initiation complex. Consumption of the amino acid leucine (Leu) is a key factor determining the anabolic response of muscle protein synthesis (MPS) and mTORC1 signaling to a meal. Research from this dissertation demonstrates that the peak activation of MPS following a complete meal is proportional to the Leu content of a meal and its ability to elevate plasma Leu. Leu has also been implicated as an inhibitor of muscle protein degradation (MPD). In particular, there is evidence suggesting that in muscle wasting conditions Leu supplementation attenuates expression of the ubiquitin-proteosome pathway, which is the primary mode of intracellular protein degradation. However, this is untested in healthy, physiological feeding models. Therefore, an experiment was performed to see if feeding isonitrogenous protein sources with different Leu contents to healthy adult rats would differentially impact ubiquitin-proteosome (protein degradation) outcomes; and if these outcomes are related to the meal responses of plasma Leu. Results showed that higher Leu diets were able to attenuate total proteasome content but had no effect on ubiquitin proteins. This research shows that dietary Leu determines postprandial muscle anabolism. In a parallel line of research, the effects of dietary Leu on changes in muscle mass overtime were investigated. Animals consuming higher Leu diets had larger gastrocnemius muscle weights; furthermore, gastrocnemius muscle weights were correlated with postprandial changes in MPS (r=0.471, P<0.01) and plasma Leu (r=0.400, P=0.01). These results show that the effect of Leu on ubiquitin-proteosome pathways is minimal for healthy adult rats consuming adequate diets. Thus, long-term changes in muscle mass observed in adult rats are likely due to the differences in MPS, rather than MPD. Factors determining the duration of Leu-stimulated MPS were further investigated. Despite continued elevations in plasma Leu and associated translation initiation factors (e.g., S6K1 and 4E-BP1), MPS returned to basal levels ~3 hours after a meal. However, administration of additional nutrients in the form of carbohydrate, Leu, or both ~2 hours after a meal was able to extend the elevation of MPS, in a time and dose dependent manner. This effect led to a novel discovery that decreases in translation elongation activity was associated with increases in activity of AMP kinase, a key cellular energy sensor. This research shows that the Leu density of dietary protein determines anabolic signaling, thereby affecting cellular energetics and body composition.
Resumo:
Memory storage in the brain involves adjustment of the strength of existing synapses and formation of new neural networks. A key process underlying memory formation is synaptic plasticity, the ability of excitatory synapses to strengthen or weaken their connections in response to patterns of activity between their connected neurons. Synaptic plasticity is governed by the precise pattern of Ca²⁺ influx through postsynaptic N-methyl-D-aspartate-type glutamate receptors (NMDARs), which can lead to the activation of the small GTPases Ras and Rap. Differential activation of Ras and Rap acts to modulate synaptic strength by promoting the insertion or removal of 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid receptors (AMPARs) from the synapse. Synaptic GTPase activating protein (synGAP) regulates AMPAR levels by catalyzing the inactivation of GTP-bound (active) Ras or Rap. synGAP is positioned in close proximity to the cytoplasmic tail regions of the NMDAR through its association with the PDZ domains of PSD-95. SynGAP’s activity is regulated by the prominent postsynaptic protein kinase, Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5), a known binding partner of CaMKII. Modulation of synGAP’s activity by phosphorylation may alter the ratio of active Ras to Rap in spines, thus pushing the spine towards the insertion or removal of AMPARs, subsequently strengthening or weakening the synapse. To date, all biochemical studies of the regulation of synGAP activity by protein kinases have utilized impure preparations of membrane bound synGAP. Here we have clarified the effects of phosphorylation of synGAP on its Ras and Rap GAP activities by preparing and utilizing purified, soluble recombinant synGAP, Ras, Rap, CaMKII, CDK5, PLK2, and CaM. Using mass spectrometry, we have confirmed the presence of previously identified CaMKII and CDK5 sites in synGAP, and have identified novel sites of phosphorylation by CaMKII, CDK5, and PLK2. We have shown that the net effect of phosphorylation of synGAP by CaMKII, CDK5, and PLK2 is an increase in its GAP activity toward HRas and Rap1. In contrast, there is no effect on its GAP activity toward Rap2. Additionally, by assaying the GAP activity of phosphomimetic synGAP mutants, we have been able to hypothesize the effects of CDK5 phosphorylation at specific sites in synGAP. In the course of this work, we also found, unexpectedly, that synGAP is itself a Ca²⁺/CaM binding protein. While Ca²⁺/CaM binding does not directly affect synGAP activity, it causes a conformational change in synGAP that increases the rate of its phosphorylation and exposes additional phosphorylation sites that are inaccessible in the absence of Ca²⁺/CaM.
The postsynaptic density (PSD) is an electron-dense region in excitatory postsynaptic neurons that contains a high concentration of glutamate receptors, cytoskeletal proteins, and associated signaling enzymes. Within the PSD, three major classes of scaffolding molecules function to organize signaling enzymes and glutamate receptors. PDZ domains present in the Shank and PSD-95 scaffolds families serve to physically link AMPARs and NMDARs to signaling molecules in the PSD. Because of the specificity and high affinity of PDZ domains for their ligands, I reasoned that these interacting pairs could provide the core components of an affinity chromatography system, including affinity resins, affinity tags, and elution agents. I show that affinity columns containing the PDZ domains of PSD-95 can be used to purify active PDZ domain-binding proteins to very high purity in a single step. Five heterologously expressed neuronal proteins containing endogenous PDZ domain ligands (NMDAR GluN2B subunit Tail, synGAP, neuronal nitric oxide synthase PDZ domain, cysteine rich interactor of PDZ three and cypin) were purified using PDZ domain resin, with synthetic peptides having the sequences of cognate PDZ domain ligands used as elution agents. I also show that conjugation of PDZ domain-related affinity tags to Proteins Of Interest (POIs) that do not contain endogenous PDZ domains or ligands does not alter protein activity and enables purification of the POIs on PDZ domain-related affinity resins.
Resumo:
Regulation of chromosome inheritance is essential to ensure proper transmission of genetic information. To accomplish accurate genome segregation, cells organize their chromosomes and actively separate them prior to cytokinesis. In Bacillus subtilis the Spo0J protein is required for accurate chromosome segregation and it regulates the developmental switch from vegetative growth to sporulation. Spo0J is a DNA-binding protein that recognizes at least eight identified parS sites located near the origin of replication. As judged by fluorescence microscopy, Spo0J forms discrete foci associated with the oriC region of the chromosome throughout the cell cycle. In an attempt to determine the mechanisms utilized by Spo0J to facilitate productive chromosome segregation, we have investigated the DNA binding activity of Spo0J. In vivo we find Spo0J associates with several kilobases of DNA flanking its specific binding sites (parS) through a parS-dependent nucleation event that promotes lateral spreading of Spo0J along the chromosome. Using purified components we find that Spo0J has the ability to coat non-specific DNA substrates. These 'Spo0J domains' provide large structures near oriC that could potentially demark, organize or localize the origin region of the chromosome.
Resumo:
The Endosomal Sorting Complex Required for Transport (ESCRT)-complex is composed of four complexes, ESCRT-0-III. They sequentially act on a late endosome to sort mono-ubiquitinated transmembrane proteins into the intralumenal vesicle, forming of a multivesicular body(MVB) that is delivered to vacuole for degradation. In Arabidopsis thaliana, the loss of an ESCRT-I component, elch displays a cytokinesis defect; while a dominant negative expression of an ESCRT-III component results in cell death due to vacuolar loss. In this work, the function of a plant-specific ELCH-interactor, CELL DEATH RELATED FYVE/SYLF DOMAIN CONTAINING 1 (CFS1) and its influences on the ESCRT-complex function are investigated. CFS1 is a phosphatidylinositol-3-phosphate- and actin-binding protein. The cfs1 mutants mimic lesions in the first eldest leaf that propagate to the next eldest one. Genetic analyses have demonstrated that cell death in cfs1 does not require a functional ESCRT-I component; nevertheless, the loss of CFS1 alleviates elchcytokinesis defect, suggesting its influence on the ESCRT-I function. Further analyses reveal that cfs1 accumulates autophagosomes throughout its lifespan due to a decrease in autophagosome degradation, suggesting that as the plant ages, the cumulated autophagosomes falsely trigger effectors-triggered immunity that executes cell death in cfs1. As the ESCRT-complex has been demonstrated to be involved in the delivery of autophagosomes to vacuole and CFS1 homolog, CFS2 reportedly interacts with ATG8, it can be postulated from the results of this work that CFS1 alone or together with CFS2 function in sequestering mature autophagosomes onto MVBs. At the MVBs, the ESCRT-complex then mediates the fusion of autophagosome and MVB for subsequent delivery to vacuole.
Resumo:
The use of animal sera for the culture of therapeutically important cells impedes the clinical use of the cells. We sought to characterize the functional response of human mesenchymal stem cells (hMSCs) to specific proteins known to exist in bone tissue with a view to eliminating the requirement of animal sera. Insulin-like growth factor-I (IGF-I), via IGF binding protein-3 or -5 (IGFBP-3 or -5) and transforming growth factor-beta 1 (TGF-beta(1)) are known to associate with the extracellular matrix (ECM) protein vitronectin (VN) and elicit functional responses in a range of cell types in vitro. We found that specific combinations of VN, IGFBP-3 or -5, and IGF-I or TGF-beta(1) could stimulate initial functional responses in hMSCs and that IGF-I or TGF-beta(1) induced hMSC aggregation, but VN concentration modulated this effect. We speculated that the aggregation effect may be due to endogenous protease activity, although we found that neither IGF-I nor TGF-beta(1) affected the functional expression of matrix metalloprotease-2 or -9, two common proteases expressed by hMSCs. In summary, combinations of the ECM and growth factors described herein may form the basis of defined cell culture media supplements, although the effect of endogenous protease expression on the function of such proteins requires investigation.
Resumo:
Recently it has been shown that the consumption of a diet high in saturated fat is associated with impaired insulin sensitivity and increased incidence of type 2 diabetes. In contrast, diets that are high in monounsaturated fatty acids (MUFAs) or polyunsaturated fatty acids (PUFAs), especially very long chain n-3 fatty acids (FAs), are protective against disease. However, the molecular mechanisms by which saturated FAs induce the insulin resistance and hyperglycaemia associated with metabolic syndrome and type 2 diabetes are not clearly defined. It is possible that saturated FAs may act through alternative mechanisms compared to MUFA and PUFA to regulate of hepatic gene expression and metabolism. It is proposed that, like MUFA and PUFA, saturated FAs regulate the transcription of target genes. To test this hypothesis, hepatic gene expression analysis was undertaken in a human hepatoma cell line, Huh-7, after exposure to the saturated FA, palmitate. These experiments showed that palmitate is an effective regulator of gene expression for a wide variety of genes. A total of 162 genes were differentially expressed in response to palmitate. These changes not only affected the expression of genes related to nutrient transport and metabolism, they also extend to other cellular functions including, cytoskeletal architecture, cell growth, protein synthesis and oxidative stress response. In addition, this thesis has shown that palmitate exposure altered the expression patterns of several genes that have previously been identified in the literature as markers of risk of disease development, including CVD, hypertension, obesity and type 2 diabetes. The altered gene expression patterns associated with an increased risk of disease include apolipoprotein-B100 (apo-B100), apo-CIII, plasminogen activator inhibitor 1, insulin-like growth factor-I and insulin-like growth factor binding protein 3. This thesis reports the first observation that palmitate directly signals in cultured human hepatocytes to regulate expression of genes involved in energy metabolism as well as other important genes. Prolonged exposure to long-chain saturated FAs reduces glucose phosphorylation and glycogen synthesis in the liver. Decreased glucose metabolism leads to elevated rates of lipolysis, resulting in increased release of free FAs. Free FAs have a negative effect on insulin action on the liver, which in turn results in increased gluconeogenesis and systemic dyslipidaemia. It has been postulated that disruption of glucose transport and insulin secretion by prolonged excessive FA availability might be a non-genetic factor that has contributed to the staggering rise in prevalence of type 2 diabetes. As glucokinase (GK) is a key regulatory enzyme of hepatic glucose metabolism, changes in its activity may alter flux through the glycolytic and de novo lipogenic pathways and result in hyperglycaemia and ultimately insulin resistance. This thesis investigated the effects of saturated FA on the promoter activity of the glycolytic enzyme, GK, and various transcription factors that may influence the regulation of GK gene expression. These experiments have shown that the saturated FA, palmitate, is capable of decreasing GK promoter activity. In addition, quantitative real-time PCR has shown that palmitate incubation may also regulate GK gene expression through a known FA sensitive transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), which upregulates GK transcription. To parallel the investigations into the mechanisms of FA molecular signalling, further studies of the effect of FAs on metabolic pathway flux were performed. Although certain FAs reduce SREBP-1c transcription in vitro, it is unclear whether this will result in decreased GK activity in vivo where positive effectors of SREBP-1c such as insulin are also present. Under these conditions, it is uncertain if the inhibitory effects of FAs would be overcome by insulin. The effects of a combination of FAs, insulin and glucose on glucose phosphorylation and metabolism in cultured primary rat hepatocytes at concentrations that mimic those in the portal circulation after a meal was examined. It was found that total GK activity was unaffected by an increased concentration of insulin, but palmitate and eicosapentaenoic acid significantly lowered total GK activity in the presence of insulin. Despite the fact that total GK enzyme activity was reduced in response to FA incubation, GK enzyme translocation from the inactive, nuclear bound, to active, cytoplasmic state was unaffected. Interestingly, none of the FAs tested inhibited glucose phosphorylation or the rate of glycolysis when insulin is present. These results suggest that in the presence of insulin the levels of the active, unbound cytoplasmic GK are sufficient to buffer a slight decrease in GK enzyme activity and decreased promoter activity caused by FA exposure. Although a high fat diet has been associated with impaired hepatic glucose metabolism, there is no evidence from this thesis that FAs themselves directly modulate flux through the glycolytic pathway in isolated primary hepatocytes when insulin is also present. Therefore, although FA affected expression of a wide range of genes, including GK, this did not affect glycolytic flux in the presence of insulin. However, it may be possible that a saturated FA-induced decrease in GK enzyme activity when combined with the onset of insulin resistance may promote the dys-regulation of glucose homeostasis and the subsequent development of hyperglycaemia, metabolic syndrome and type 2 diabetes.
Resumo:
This study, to elucidate the role of des(1-3)IGF-I in the maturation of IGF-I,used two strategies. The first was to detect the presence of enzymes in tissues, which would act on IGF-I to produce des(1-3)IGF-I, and the second was to detect the potential products of such enzymic activity, namely Gly-Pro-Glu(GPE), Gly-Pro(GP) and des(l- 3)IGF-I. No neutral tripeptidyl peptidase (TPP II), which would release the tripeptide GPE from IGF-I, was detected in brain, urine nor in red or white blood cells. The TPPlike activity which was detected, was attributed to a combined action of a dipeptidyl peptidase (DPP N) and an aminopeptidase (AP A). A true TPP II was, however, detected in platelets. Two purified TPP II enzymes were investigated but they did not release GPE from IGF-I under a variety of conditions. Consequently, TPP II seemed unlikely to participate in the formation of des(1-3)IGF-I. In contrast, an acidic tripeptidyl peptidase activity (TPP I) was detected in brain and colostrum, the former with a pH optimum of 4.5 and the latter 3.8. It seems likely that such an enzyme would participate in the formation of des( 1-3 )IGF-I in these tissues in vitro, ie. that des(1-3)IGF-I may have been produced as an artifact in the isolation of IGF-I from brain and colostrum in acidic conditions. This contrasts with suggestions of an in vivo role for des(1-3)IGF-I, as reported by others. The activity of a dipeptidyl peptidase N (DPP N) from urine, which should release the dipeptide GP from IGF-I, was assessed under a variety of conditions and with a variety of additives and potential enzyme stimulants, but there was no release of GP. The DPP N also exhibited a transferase activity with synthetic substrates in the presence of dipeptides, at lower concentrations than previously reported for other acceptors or other proteolytic enzymes. In addition, a low concentration of a product,possibly the tetrapeptide Gly-Pro-Gly-Leu, was detected with the action of the enzyme on IGF-I in the presence of the dipeptide Gly-Leu. As part of attempts to detect tissue production of des(1-3)IGF-I, a monoclonal antibody (MAb ), directed towards the GPE- end ofiGF-I was produced by immunisation with a 10-mer covalently attached to a carrier protein. By the use of indirect ELISA and inhibitor studies, the MAb was shown to selectively recognise peptides with anNterminal GPE- sequence, and applied to the indirect detection of des(1-3)IGF-I. The concentration of GPE in brain, measured by mass spectrometry ( MS), was low, and the concentration of total IGF-I (measured by ELISA with a commercial polyclonal antibody [P Ab]) was 40 times higher at 50 nmol/kg. This also, was not consistent with the action of a tripeptidyl peptidase in brain that converted all IGF-I to des(1-3)IGF-I plus GPE. Contrasting ELISA results, using the MAb prepared in this study, suggest an even higher concentration of intact IGF-I of 150 nmollkg. This would argue against the presence of any des( 1-3 )IGF-I in brain, but in turn, this indicates either the presence of other substances containing a GPE amino-terminus or other cross reacting epitope. Although the results of the specificity studies reported in Chapter 5 would make this latter possibility seem unlikely, it cannot be completely excluded. No GP was detected in brain by MS. No GPE was detected in colostrum by capillary electrophoresis (CE) but the interference from extraneous substances reduced the detectability of GPE by CE and this approach would require further, prior, purification and concentration steps. A molecule, with a migration time equal to that of the peptide GP, was detected in colostrum by CE, but the concentration (~ 10 11mo/L) was much higher than the IGF-I concentration measured by radio-immunoassay using a PAb (80 nmol/L) or using a Mab (300-400 nmolL). A DPP IV enzyme was detected in colostrum and this could account for the GP, derived from substrates other than IGF-1. Based on the differential results of the two antibody assays, there was no indication of the presence of des(1-3)IGF-I in brain or colostrum. In the absence of any enzyme activity directed towards the amino terminus of IGF-I and the absence any potential products, IGF-I, therefore, does not appear to "mature" via des(1-3)IGF-I in the brain, nor in the neutral colostrum. In spite of these results which indicate the absence of an enzymic attack on IGF-I and the absence of the expected products in tissues, the possibility that the conversion of IGF-I may occur in neutral conditions in limited amounts, cannot be ruled out. It remains possible that in the extracellular environment of the membrane, a complex interaction of IGF-I, binding protein, aminopeptidase(s) and receptor, produces des(1- 3)IGF-I as a transient product which is bound to the receptor and internalised.
Resumo:
Non-pathogenic lactic acid bacteria are economically important Gram-positive bacteria used extensively in the food industry. Due to their “generally regarded as safe” status, certain species from the genera Lactobacillus and Lactococcus are also considered desirable as candidates for the production and secretion of recombinant proteins, particular those with therapeutic applications. The hypothesis examined by this thesis is that Lactococcus lactis can be modified to be an effective antimicrobial agent. Therefore, the aims of this thesis were to investigate the optimisation of the expression, secretion and/or activities of potential heterologous antimicrobial proteins by the model lactic acid bacterium, Lactococcus lactis subsp. cremoris MG1363. L. lactis strains were engineered to express and secrete the recombinant CyuC surface protein from Lactobacillus reuteri BR11, and a fusion protein consisting of CyuC and lysostaphin using the Sep promoter and secretion signal. CyuC has been characterised as a cystine-binding protein, but has also been demonstrated to have fibronectin binding activity. Lysostaphin is a bacteriolytic enzyme with specific activity against the Gram-positive pathogen, Staphylococcus aureus. These modified L. lactis strains were then investigated to see if they had the ability to inhibit the adhesion of S. aureus to host extracellular matrix (ECM) proteins. It was observed that the cell extracts of the L. lactis strain with the vector only (pGhost9:ISS1) was able to inhibit the adhesion of S. aureus to fibronectin, whilst the cell extracts of the L. lactis strain expressing lysostaphin was able to inhibit adhesion to keratin. Finally, this thesis has identified specific lactococcal genes that affect the secretion of lysostaphin through the use of random transposon mutagenesis. Ten mutants with higher lysostaphin activity contained insertions in four different genes encoding: (i) an uncharacterised putative transmembrane protein (llmg_0609), (ii) an enzyme catalysing the first step in peptidoglycan biosynthesis (murA2), (iii) a homolog of the oxidative defence regulator (trmA), and (iv) an uncharacterised putative enzyme involved in ubiquinone biosynthesis (llmg_2148). The higher lysostaphin activity observed in these mutants was found to be due to higher amounts of lysostaphin being secreted. The findings of this thesis contribute to the development of this organism as an antimicrobial agent and also to our understanding of L. lactis genetics.
Resumo:
Lactobacillus reuteri BR11 possesses an abundant cystine uptake (Cyu) ABC-transporter that was previously found to be involved in a novel mechanism of oxidative defence mediated by cystine. The current study aimed to elucidate this mechanism with a focus on the role of the co-transcribed cystathionine ã-lyase (Cgl). Growth studies of wild-type L. reuteri BR11 and mutants inactivated in cgl and the cystine-binding protein encoding gene cyuC showed that in contrast to the Cyu transporter, whose inactivation led to growth arrest in aerated cultures, Cgl is not crucial for oxidative defence. However, the role of Cgl in oxidative defence became apparent in the presence of severe oxidative damage and cysteine deprivation. Cysteine was found to be protective against oxidative stress, and the action of Cgl in both cysteine biosynthesis and degradation poses a seemingly futile pathway that deprives the intracellular cysteine pool. To further characterise the relationship between Cgl activity and cysteine and their roles in oxidative defence, enzymatic assays were performed on purified Cgl, and intracellular concentrations of cysteine, cystathionine and methionine were determined. Cgl was highly active towards cystine and cystathionine and less active towards cysteine in vitro, suggesting the main function of Cgl to be cysteine biosynthesis. Cysteine was found at high concentrations in the cell, but the levels were not significantly affected by inactivation of cgl or growth under aerobic conditions. It was concluded that both anabolic and catabolic activities of Cgl towards cysteine contribute to oxidative defence, the former by maintaining an intracellular reservoir of thiol analogous to glutathione, and the latter by producing H2S which is readily secreted, thus creating a reducing extracellular environment. The significance of the Cyu transporter to the physiology of L. reuteri BR11 prompted a phylogenetic study to determine its presence in bacteria. Orthologs of the Cyu transporter that are closest matches to the Cyu transporter are only limited to several species of Lactobacillus and Leuconostoc. Outside the Lactobacillales order, the closest matching orthologs belong to Proteobacteria, and there are more orthologs in Proteobacteria than non-Lactobacillales Firmicutes, suggesting that the Cyu transporter locus was present in the ancestor of the Proteobacteria and Firmicutes, and over evolutionary time has been lost or diverged in many Firmicutes. The clustering of the Cyu transporter locus with a gene encoding a Cgl family protein is even rarer. It was only found in L. reuteri, Lactobacillus vaginalis, Weissella paramesenteroides, the Lactobacillus casei group, and several Campylobacter sp. An accompanying phylogenetic study of L. reuteri BR11 using multi-locus sequence analysis showed that L. reuteri BR11 had diverged from more than 100 strains of L. reuteri isolated from various hosts and geographical locations. However, comparison with other Lactobacillus species supported the current classification of BR11 as L. reuteri. The most closely related species to L. reuteri is L. vaginalis or Lactobacillus antri, depending on the housekeeping gene used for analysis. The close evolutionary relationship of L. vaginalis to L. reuteri and the high degree of sequence identity between the cgl-cyuABC loci in both species suggest that the Cyu system is highly likely to perform similar functions in L. vaginalis. In search of other genes that function in oxidative defence, a number of mutants which were inactivated in genes that confer increased resistance to oxidative stress in other bacteria were constructed. The genes targeted were ahpC (peroxidase component of the alkyl hydroperoxide reductase system), tpx (thiol peroxidase), osmC (osmotically induced protein C), mntH (Mn2+/Fe2+ transporter), gshA (ã-glutamylcysteine synthetase) and msrA (methionine sulfoxide reductase). The ahpC and mntH mutants had slightly lower minimum inhibitory concentrations of organic peroxides, suggesting these genes might be involved in resistance to organic peroxides in L. reuteri. However, none of the mutants exhibited growth defects in aerated cultures, in stark contrast to the cyuC mutant. This may be due to compensatory functions of other genes, a hypothesis which cannot be tested until a robust protocol for constructing markerless multiple gene deletion mutants in L. reuteri is developed. These results highlight the importance of the Cyu transporter in oxidative defence and provide a foundation for extending the research of this system in other bacteria.
Resumo:
Recent studies have demonstrated that IGF-I associates with VN through IGF-binding proteins (IGFBP) which in turn modulate IGF-stimulated biological functions such as cell proliferation, attachment and migration. Since IGFs play important roles in transformation and progression of breast tumours, we aimed to describe the effects of IGF-I:IGFBP:VN complexes on breast cell function and to dissect mechanisms underlying these responses. In this study we demonstrate that substrate-bound IGF-I:IGFBP:VN complexes are potent stimulators of MCF-7 breast cell survival, which is mediated by a transient activation of ERK/MAPK and sustained activation of PI3-K/AKT pathways. Furthermore, use of pharmacological inhibitors of the MAPK and PI3-K pathways confirms that both pathways are involved in IGF-I:IGFBP:VN complex-mediated increased cell survival. Microarray analysis of cells stimulated to migrate in response to IGF-I:IGFBP:VN complexes identified differential expression of genes with previously reported roles in migration, invasion and survival (Ephrin-B2, Sharp-2, Tissue-factor, Stratifin, PAI-1, IRS-1). These changes were not detected when the IGF-I analogue (\[L24]\[A31]-IGF-I), which fails to bind to the IGF-I receptor, was substituted; confirming the IGF-I-dependent differential expression of genes associated with enhanced cell migration. Taken together, these studies have established that IGF-I:IGFBP:VN complexes enhance breast cell migration and survival, processes central to facilitating metastasis. This study highlights the interdependence of ECM and growth factor interactions in biological functions critical for metastasis and identifies potential novel therapeutic targets directed at preventing breast cancer progression.
Resumo:
Background: In order to maintain cellular viability and genetic integrity cells must respond quickly following the induction of cytotoxic double strand DNA breaks (DSB). This response requires a number of processes including stabilisation of the DSB, signalling of the break and repair. It is becoming increasingly apparent that one key step in this process is chromatin remodelling. Results: Here we describe the chromodomain helicase DNA-binding protein (CHD4) as a target of ATM kinase. We show that ionising radiation (IR)-induced phosphorylation of CHD4 affects its intranuclear organization resulting in increased chromatin binding/retention. We also show assembly of phosphorylated CHD4 foci at sites of DNA damage, which might be required to fulfil its function in the regulation of DNA repair. Consistent with this, cells overexpressing a phospho-mutant version of CHD4 that cannot be phosphorylated by ATM fail to show enhanced chromatin retention after DSBs and display high rates of spontaneous damage. Conclusion: These results provide insight into how CHD4 phosphorylation might be required to remodel chromatin around DNA breaks allowing efficient DNA repair to occur.