900 resultados para particulate-reinforced Al composites
Resumo:
This paper reports results of a geochemical study of suspended particulate matter and particle fluxes in the Norwegian Sea above the Bear Island slope. Concentrations of suspended particles and the main components of suspended matter were determined in the euphotic, intermediate (clean water), and bottom nepheloid layers. It was shown that biogenic components are predominant in water above the nepheloid layer, whereas suspended matter of the nepheloid layer is formed by resuspension of lithogenic components of bottom sediments. Chemical compositions of suspended matter and material collected in sediment traps are identical.
Resumo:
The response of Emiliania huxleyi (Lohmann) W. W. Hay et H. Mohler, Calcidiscus leptoporus (G. Murray et V. H. Blackman) J. Schiller, andSyracosphaera pulchra Lohmann to elevated partial pressure of carbon dioxide (pCO2) was investigated in batch cultures. We reported on the response of both haploid and diploid life stages of these three species. Growth rate, cell size, particulate inorganic carbon (PIC), and particulate organic carbon (POC) of both life stages were measured at two different pCO2 (400 and 760 parts per million [ppm]), and their organic and inorganic carbon production were calculated. The two life stages within the same species generally exhibited a similar response to elevated pCO2, the response of the haploid stage being often more pronounced than that of the diploid stage. The growth rate was consistently higher at elevated pCO2, but the response of other processes varied among species. Calcification rate of C. leptoporusand of S. pulchra did not change at elevated pCO2, whereas it increased in E. huxleyi. POC production and cell size of both life stages of S. pulchra and of the haploid stage of E. huxleyi markedly decreased at elevated pCO2. It remained unaltered in the diploid stage of E. huxleyi and C. leptoporus and increased in the haploid stage of the latter. The PIC:POC ratio increased in E. huxleyi and was constant in C. leptoporus and S. pulchra. Elevated pCO2 has a significant effect on these three coccolithophore species, the haploid stage being more sensitive. This effect must be taken into account when predicting the fate of coccolithophores in the future ocean.
Resumo:
The lipid composition of particulate matter in oceanic environments can provide informations on the nature and origin of the organic matter as well as on their transformation processes. Molecular characteristics for lipids in the Arctic environment have been used as indicators of the sources and transformation of organic particulate matter (Smith et al., 1997; Fahl and Stein, 1997, 1999). However, the features of the lipid composition of particulate matter in the Arctic with its high seasonality of ice Cover and primary productivity has been studied insufficiently. Lipids are one of the most important compounds of organic matter. On the one hand, the composition of lipids is a result of the variability of biological sources (phyto- and zooplankton, higher plants, bacteria etc.). On the other hand, the lipid composition of particulate matter is undergone significant alteration during vertical transport. The organic matter balance in the Arctic marginal seas, such as the Kara and Laptev seas, is characterized by the significant supply of dissolved and particulate material by the major Eurasian rivers - Ob, Yenisei and Lena (Cauwet and Sidorov, 1996; Gordeev et al., 1996, Martin et al., 1993). In relation to the world's ocean the primary productivity values are lower in the Arctic seas due to the ice-cover. However local increased values of primary productivity can be connected with the melting processes inducing increased phytoplankton growth near ice-edge (Nelson et al., 1989; Fahl and Stein, 1997) and enhanced river supply of nutrients, These features can influence the proportion of allochtonous and autochtonous components of the organic matter in the Arctic marginal seas (Fahl and Stein, 1997; Stein and Fahl, 1999). Furthermore, increased lipid contents in aquatic environments were found near density discontinuities (Parish et al., 1988). Although being less informative than lipid studies on the molecular level the character of lipid composition analysis on the group could also be used for studying of particulate organic matter and its transformation in sedimentation processes in the Arctic. In this paper the investigation of the characteristics of lipid composition performed by Alexandrova and Shevchenko (1997) in Arctic seas was continued.
Resumo:
The present dataset is part of an interdisciplinary project carried out on board the RV Southern Surveyor off New South Wales (Australia) from the 15th to the 31st October 2010. The main objective of the research voyage was to evaluate how the East Australian Current (EAC) affects the optical, chemical, physical, and biological water properties of the continental shelf and slope off the NSW coast.
Resumo:
In this paper authors present and discuss data on distribution and mineral composition of suspended particulate matter (SPM) in the Franz Victoria Trough, collected during Cruise 14 of scientific icebreaker Akademik Fedorov in the northern Barents Sea in October 1998. Higher total SPM concentrations (0.4-1.8 mg/l) were measured in the near-bottom layer of the Franz Victoria Strait and central part of the trough. Potential source of mineral particles in SPM is fine fractions of Barents Sea bottom sediments. They form the nepheloid layer, which spreads on the continental slope along the trough together with Barents Sea waters at 350-400 m depth.
Resumo:
The TEX86 paleotemperature proxy is based on archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids preserved in marine sediments, yet both the influence of different physiological factors on the structural distribution of GDGTs, and the mechanism(s) by which GDGTs are exported to marine sediments remain unclear. In particular, TEX86 temperatures derived directly from suspended particulate matter (SPM) in the water column can diverge strongly from corresponding in situ temperatures. Here we investigated the abundance and structural distribution of GDGTs in the South-west and Equatorial Atlantic Ocean by examining SPM collected from four surface 1000 m depth profiles spanning 48 degrees of latitude. The depth distribution of GDGTs was consistent with our current understanding of marine archaeal ecology, and specifically of ammonia-oxidizing Thaumarchaeota. Maximum GDGT concentrations occurred at the base of the primary NO2- maximum. Core GDGTs dominated the structural distribution in surface waters, while intact polar GDGTs - thought to potentially indicate live cells - were more abundant at all depths below the maximum NO2- concentration. When integrated through the upper 1000 m of the water column, > 98% of GDGTs were present in waters at and below the depth of the primary NO2- maximum. TEX86-calculated temperatures showed local minima at the depth of the NO2- maximum, while the ratio of GDGT 2:GDGT 3 [2/3] increased with depth throughout the upper water column. These results were used to model the depth of origin for GDGTs exported to sediments. By comparing our SPM data to published TEX86 values and [2/3] ratios from sediments near our study sites, we conclude that most GDGTs are exported from the depth of maximum GDGT concentrations, near the subsurface NO2- maximum (~80-250 m). This indicates that local ammonia oxidation dynamics are important regional controls on the GDGT ratios preserved in sediments. Predicting the extent to which subsurface variations in archaeal activity may influence the sedimentary TEX86 record will require a better understanding of how site-specific productivity and particle dynamics in the upper water column influence the depth of origin for exported organic matter.