943 resultados para parasite-host cell interaction


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Brazilian pepper (Schinus terebinthifolius) is an exotic shrub or small tree that has become well established as an invasive and highly competitive species through much of southern Florida. Love vine (Cassytha filiformis), a native parasitic plant, was noted parasitizing Brazilian pepper, apparently affecting its health. The objective of this study was to investigate the nature of this parasitic interaction in southern Florida. Brazilian pepper populations were studied to determine whether parasitism by love vine may affect growth and reproduction. Anatomical studies of love vine parasitizing Brazilian pepper determined physical aspects of the parasitic interaction at the cell and tissue level. Physiological aspects of this interaction were investigated to help describe love vine resource acquisition as a parasite on host Brazilian pepper plants, and as an autotrophic plant. An investigation of ecological aspects of this parasitic interaction was done to determine whether physical or biological aspects of habitats may contribute to love vine parasitism on Brazilian pepper. These studies indicated that: (1) parasitism by love vine significantly decreased growth and reproduction of Brazilian pepper plants; (2) anatomical and physiological investigations indicated that love vine was primarily a xylem parasite on Brazilian pepper, but that some assimilated carbon nutrients may also be acquired from the host; (3) love vine is autotrophic (i.e., hemiparasitic), but is totally dependent on its host for necessary resources; (4) the occurrence of love vine parasitism on Brazilian pepper is mediated by physical characters of the biological community. ^

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Brazilian pepper (Schinus terebinthifolius) is an exotic shrub or small tree that has become well established as an invasive and highly competitive species through much of southern Florida. Love vine (Cassytha filiformis), a native parasitic plant, was noted parasitizing Brazilian pepper, apparently affecting its health. The objective of this study was to investigate the nature of this parasitic interaction in southern Florida. Brazilian pepper populations were studied to determine whether parasitism by love vine may affect growth and reproduction. Anatomical studies of love vine parasitizing Brazilian pepper determined physical aspects of the parasitic interaction at the cell and tissue level. Physiological aspects of this interaction were investigated to help describe love vine resource acquisition as a parasite on host Brazilian pepper plants, and as an autotrophic plant. An investigation of ecological aspects of this parasitic interaction was done to determine whether physical or biological aspects of habitats may contribute to love vine parasitism on Brazilian pepper. These studies indicated that: 1) parasitism by love vine significantly decreased growth and reproduction of Brazilian pepper plants; 2) anatomical and physiological investigations indicated that love vine was primarily a xylem parasite on Brazilian pepper, but that some assimilated carbon nutrients may also be acquired from the host; 3) love vine is autotrophic (i. e., hemiparasitic), but is totally dependent on its host for necessary resources; 4) the occurrence of love vine parasitism on Brazilian pepper is mediated by physical characters of the biological community.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

An impedance method was developed to determine how immune system cells (hemocyte) interact with intruder cells (parasites). When the hemocyte cells interact with the parasites, they cause a defensive reaction and the parasites start to aggregate in clusters. The level of aggregation is a measure of the host-parasite interaction, and provides information about the efficiency of the immune system response. The cell aggregation is monitored using a set of microelectrodes. The impedance spectrum is measured between each individual microelectrode and a large reference electrode. As the cells starts to aggregate and settle down towards the microelectrode array the impedance of the system is changed. It is shown that the system impedance is very sensitive to the level of cell aggregation and can be used to monitor in real time the interaction between hemocyte cells and parasites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Witches' broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen's transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly, M. perniciosa biotrophic mycelia develop as long-term parasites that orchestrate changes in plant metabolism to increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The parasitic protozoan Leishmania (Leishmania) amazonensis alternates between mammalian and insect hosts. In the insect host, the parasites proliferate as procyclic promastigotes andthen differentiate into metacyclic infective forms. The meta 1 gene is preferentially expressed during metacyclogenesis. Meta 1 expression profile determination along parasite growth curves revealed that the meta 1 mRNA level peaked at the early stationary phase then decreased to an intermediate level. No correlation was observed between meta 1 expression and infectivity. Conversely, infectivity correlated with the increase of apoptotic cells in the late stationary phase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background and Aims: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. Methodology and Principal Findings: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF). Nitric oxide (NO) donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS) increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. Conclusion/Significance: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially explained by a reduced eNOS expression. In addition, our data show that the disease primes endothelial cells in vivo, which keep the acquired phenotype in culture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to investigate the role of interleukin 12 (IL-12) during Strongyloides venezuelensis infection. IL-12(-/-) and wildtype C57BL/6 mice were subcutaneously infected with 1500 larvae of S. venezuelensis. On days 7, 14, and 21 post-infection, we determined eosinophil and mononuclear cell numbers in the blood and broncoalveolar lavage fluid (BALF), Th2 cytokine secretion in the lung parenchyma, and serum antibody levels. The numbers of eggs in the feces and worm parasites in the duodena were also quantified. The eosinophil and mononuclear cell counts and the concentrations of IL-3, IL-5, IL-10, IL-13, and IgG1 and IgE antibodies increased significantly in infected IL-12(-/-) and wild-type mice as compared with uninfected controls. However, the number of eosinophils and mononuclear cells in the blood and BALF and the Th2 cytokine levels in the lungs of infected IL-12-/- mice were greater than in infected wild-type C57BL/6 mice. In addition, serum IgE and IgG1 levels were also significantly enhanced in the infected mice lacking IL-12. Meanwhile, parasite burden and fecal egg counts were significantly decreased in infected IL-12-/- mice. Together, our results showed that the absence of IL-12 upregulates the Th2 immune response, which is important for control of S. venezuelensis infection. (C) 2009 Elsevier Masson SAS. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The basic framework for the JAK/STAT pathway is well documented. Recruitment of latent cytoplasmic STAT transcription factors to tyrosine phosphorylated docking sites on cytokine receptors and their JAK-mediated phosphorylation instigates their translocation to the nucleus and their ability to bind DNA, The biochemical processes underlying recruitment and activation of this pathway have commonly been studied in reconstituted in vitro systems using previously defined recombinant signaling components. We have dissected the Interferon gamma (IFN gamma) signal transduction pathway in crude extracts from wild-type and STAT1-negative mutant cell Lines by real-time BIAcore analysis, size-exclusion (SE) chromatography and immune-detection. The data indicate that in detergent-free cell extracts: (1) the phospho-tyrosine (Y440P)-containing peptide motif of the IFN gamma-receptor ct-chain interacts directly with STAT1, or STAT1 complexes, and no other protein; (2) nonactivated STAT 1 is present in a higher molecular weight complex(es) and, at least for IFN gamma-primed cells, is available for recruitment to the activated IFN gamma-receptor from only a subset of such complexes; (3) activated STAT1 is released from the receptor as a monomer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We review here the advances in the understanding of the immunopathology of human paracoccidioidomycosis (PCM). Its investigation must take in account the intriguing natural history of the mycosis and its agent, providing clues to the mechanisms that lead to development of disease (unbalanced host-parasite relationship?) or to the clinically silent, chronic carrier state (balanced host-parasite relationship?), in exposed people living in endemic areas. Although the literature on this subject has progressed notably, the overall picture of what are the mechanisms of susceptibility or resistance continues to be fragmentary. Major advances were seen in the description of both the cytokines/chemokines associated to the different outcomes of the host-parasite interaction, and the fungus-monocyte/macrophage interaction, and cytokines released thereof by these cells. However, relatively few studies have attempted to modify, even in vitro, the patients` unbalanced immune reactivity. Consequently, the benefits of this improved knowledge did not yet reach clinical practice. Fortunately, the previous notion of the immune system as having two nearly independent arms, the innate and adaptive immunities, leaving a large gap between them, is now being overcome. Immunologists are now trying to dissect the connections between these two arms. This will certainly lead to more productive results. Current investigations should address the innate immunity events that trigger the IL-12/IFN-gamma axis and confer protection against PCM in those individuals living in endemic areas, who have been infected, but did not develop the mycosis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. Disseminated infection caused by bacille Calmette-Guerin (BCG) vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected persons, the cause of disseminated BCG disease is unexplained. METHODS We evaluated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, who required hematopoietic stem-cell transplantation. We also studied two otherwise healthy subjects with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic-cell compartments in these three subjects and sequenced candidate genes in which mutations could plausibly confer susceptibility to BCG disease. RESULTS We detected two distinct disease-causing mutations affecting interferon regulatory factor 8 (IRF8). Both K108E and T80A mutations impair IRF8 transcriptional activity by disrupting the interaction between IRF8 and DNA. The K108E variant was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. The T80A variant was associated with an autosomal dominant, milder immunodeficiency and a selective depletion of CD11c+CD1c+ circulating dendritic cells. CONCLUSIONS These findings define a class of human primary immunodeficiencies that affect the differentiation of mononuclear phagocytes. They also show that human IRF8 is critical for the development of monocytes and dendritic cells and for antimycobacterial immunity. (Funded by the Medical Research Council and others.)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using two mouse strains with different abilities to generate interferon (IFN)-gamma production after Mycobacterium tuberculosis infection, we tested the hypothesis that the frequency and activity of regulatory T (Treg) cells are influenced by genetic background. Our results demonstrated that the suppressive activity of spleen Treg cells from infected or uninfected BALB/c mice was enhanced, inhibiting IFN-gamma and interleukin (IL)-2 production. Infected C57BL/6 mice exhibited a decrease in the frequency of lung Treg cells and an increased ratio CD4(+):CD4(+)Foxp3(+) cells compared with infected BALB/c mice and uninfected C57BL/6 mice. Moreover, infected C57BL/6 mice also had a decrease in the immunosuppressive capacity of spleen Treg cells, higher lung IFN-gamma and IL-17 production, and restricted the infection better than BALB/c mice. Adoptive transfer of BALB/c Treg cells into BALB/c mice induced an increase in bacterial colony-forming unit (CFU) counts. Furthermore, BALB/c mice treated with anti-CD25 antibody exhibited lung CFU counts significantly lower than mice treated with irrelevant antibody. Our results show that in BALB/c mice, the Treg cells have a stronger influence than that in C57BL/6 mice. These data suggest that BALB/c and C57BL/6 mice may use some different mechanisms to control M. tuberculosis infection. Therefore, the role of Treg cells should be explored during the development of immune modulators, both from the perspective of the pathogen and the host. Immunology and Cell Biology (2011) 89, 526-534; doi:10.1038/icb.2010.116; published online 19 October 2010

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Histoplasma capsulatum (Hc) is a facultative, intracellular parasite of worldwide significance. Infection with Hc produces a broad spectrum of diseases and may progress to a life-threatening systemic disease, particularly in individuals with HIV infection. Resolution of histoplasmosis is associated with the activation of cell-mediated immunity, and leukotriene B(4) plays an important role in this event. Lipid bodies (LBs) are increasingly being recognized as multifunctional organelles with roles in inflammation and infection. In this study, we investigated LB formation in histoplasmosis and its putative function in innate immunity. LB formation in leukocytes harvested from Hc-infected C57BL/6 mice peaks on day 2 postinfection and correlates with enhanced generation of lipid mediators, including leukotriene B(4) and PGE(2). Pretreatment of leukocytes with platelet-activating factor and BLT1 receptor antagonists showed that both lipid mediators are involved in cell signaling for LB formation. Alveolar leukocytes cultured with live or dead Hc also presented an increase in LB numbers. The yeast alkali-insoluble fraction 1, which contains mainly beta-glucan isolated from the Hc cell wall, induced a dose- and time-dependent increase in LB numbers, indicating that beta-glucan plays a signaling role in LB formation. In agreement with this hypothesis, beta-glucan-elicited LB formation was inhibited in leukocytes from 5-LO(-/-), CD18(low) and TLR2(-/-) mice, as well as in leukocytes pretreated with anti-Dectin-1 Ab. Interestingly, human monocytes from HIV-1-infected patients failed to produce LBs after beta-glucan stimulation. These results demonstrate that Hc induces LB formation, an event correlated with eicosanoid production, and suggest a role for these lipid-enriched organelles in host defense during fungal infection. The Journal of Immunology, 2009, 182: 4025-4035.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The morphologic appearance and clinical behavior of the human urinary bladder papillary transitional cell carcinoma (TCC) probably result from a complex interaction between carcinogenic insults and host resistance during the patient`s life. While the main recognized risk factors are of environmental origin (e.g. smoking), relatively little information exists about the susceptibility to TCC development. The human leukocyte antigen G (HLA-G) molecule plays an important role in immune response regulation and has been implicated in the inhibition of the cytolytic function of natural killer and cytotoxic T cells. Several lines of evidence indicate that HLA-G polymorphisms influence the expression level and production of different HLA-G isoforms. The aim of this study was to explore a possible influence of the HLA-G polymorphism on the susceptibility to urinary bladder TCC development and progression in smokers and nonsmokers Brazilian subjects. The HLA-G locus was found to be associated with susceptibility to TCC development and progression. The G*0104 allelic group (specially the G*010404 allele) and the G*0103 allele were associated with a tobacco-dependent influence on TCC development. The G*0104 group was associated with progression to high-grade tumors, irrespective of smoking habit, while the G*0103 allele was associated to high-grade tumor only in smoking patients. Our results are an evidence that the HLA-G locus itself, or as part of an extended haplotype encompassing this chromosome region (particularly the HLA-A given the high linkage disequilibrium observed between them in this data series), may be associated with TCC susceptibility and tumor progression, suggesting a tobacco-dependent influence of these polymorphisms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Individual differences in drug efficacy or toxicity can be influenced by genetic factors. We investigated whether polymorphisms of pharmacogenes that interfere with metabolism of drugs used in conditioning regimen and graft-versus-host disease (GvHD) prophylaxis could be associated with outcomes after HLA-identical hematopoietic stem cell transplantation (HSCT). Pharmacogenes and their polymorphisms were studied in 107 donors and patients with leukemia receiving HSCT. Candidate genes were: P450 cytochrome family (CYP2B6), glutathione-S-transferase family (GST), multidrug-resistance gene, methylenetetrahydrofolate reductase (MTHFR) and vitamin D receptor (VDR). The end points studied were oral mucositis (OM), hemorrhagic cystitis (HC), toxicity and venoocclusive disease of the liver (VOD), GvHD, transplantation-related mortality (TRM) and survival. Multivariate analyses, using death as a competing event, were performed adjusting for clinical factors. Among other clinical and genetic factors, polymorphisms of CYP2B6 genes that interfere with cyclophosphamide metabolism were associated with OM (recipient CYP2B6*4; P=0.0067), HC (recipient CYP2B6*2; P=0.03) and VOD (donor CYP2B6*6; P=0.03). Recipient MTHFR polymorphisms (C677T) were associated with acute GvHD (P=0.03), and recipient VDR TaqI with TRM and overall survival (P=0.006 and P=0.04, respectively). Genetic factors that interfere with drug metabolisms are associated with treatment-related toxicities, GvHD and survival after HLA-identical HSCT in patients with leukemia and should be investigated prospectively.