780 resultados para paramagnetic
Resumo:
Hemoproteins are a very important class of enzymes in nature sharing the essentially same prosthetic group, heme, and are good models for exploring the relationship between protein structure and function. Three important hemoproteins, chloroperoxidase (CPO), horseradish peroxidase (HRP), and cytochrome P450cam (P450cam), have been extensively studied as archetypes for the relationship between structure and function. In this study, a series of 1D and 2D NMR experiments were successfully conducted to contribute to the structural studies of these hemoproteins. ^ During the epoxidation of allylbenzene, CPO is converted to an inactive green species with the prosthetic heme modified by addition of the alkene plus an oxygen atom forming a five-membered chelate ring. Complete assignment of the NMR resonances of the modified porphyrin extracted and demetallated from green CPO unambiguously established the structure of this porphyrin as an NIII-alkylated product. A novel substrate binding motif of CPO was proposed from this concluded regiospecific N-alkylation structure. ^ Soybean peroxidase (SBP) is considered as a more stable, more abundant and less expensive substitute of HRP for industrial applications. A NMR study of SBP using 1D and 2D NOE methods successfully established the active site structure of SBP and consequently fills in the blank of the SBP NMR study. All of the hyperfine shifts of the SBP-CN- complex are unambiguously assigned together with most of the prosthetic heme and all proximal His170 resonances identified. The active site structure of SBP revealed by this NMR study is in complete agreement with the recombinant SBP crystal structure and is highly similar to that of the HRP with minor differences. ^ The NMR study of paramagnetic P450cam had been greatly restricted for a long time. A combination of 2D NMR methods was used in this study for P450cam-CN - complexes with and without camphor bound. The results lead to the first unequivocal assignments of all heme hyperfine-shifted signals, together with certain correlated diamagnetic resonances. The observed alternation of the assigned novel proximal cysteine β-CH2 resonances induced by camphor binding indicated a conformational change near the proximal side.^
Resumo:
Chloroperoxidase (CPO) is the most versatile heme-containing enzyme that catalyzes a broad spectrum of reactions. The remarkable feature of this enzyme is the high regio- and enantio-selectivity exhibited in CPO-catalyzed oxidation reactions. The aim of this dissertation is to elucidate the structural basis for regio- and enantio-selective transformations and investigate the application of CPO in biodegradation of synthetic dyes. ^ To unravel the mechanism of CPO-catalyzed regioselective oxidation of indole, the dissertation explored the structure of CPO-indole complex using paramagnetic relaxation and molecular modeling. The distances between the protons of indole and the heme iron revealed that the pyrrole ring of indole is oriented toward the heme with its 2-H pointing directly at the heme iron. This provides the first experimental and theoretical explanation for the "unexpected" regioselectivity of CPO-catalyzed indole oxidation. Furthermore, the residues including Leu 70, Phe 103, Ile 179, Val 182, Glu 183, and Phe 186 were found essential to the substrate binding to CPO. These results will serve as a lighthouse in guiding the design of CPO mutants with tailor-made activities for biotechnological applications. ^ To understand the origin of the enantioselectivity of CPO-catalyzed oxidation reactions, the interactions of CPO with substrates such as 2-(methylthio)thiophene were investigated by nuclear magnetic resonance spectroscopy (NMR) and computational techniques. In particular, the enantioselectivity is partly explained by the binding orientation of substrates. In third facet of this dissertation, a green and efficient system for degradation of synthetic dyes was developed. Several commercial dyes such as orange G were tested in the CPO-H2O 2-Cl- system, where degradation of these dyes was found very efficient. The presence of halide ions and acidic pH were found necessary to the decomposition of dyes. Significantly, the results revealed that this degradation of azo dyes involves a ferric hypochlorite intermediate of CPO (Fe-OCl), compound X.^
Resumo:
Nanocrystalline and bulk samples of “Fe”-doped CuO were prepared by coprecipitation and ceramic methods. Structural and compositional analyses were performed using X-ray diffraction, SEM, and EDAX. Traces of secondary phases such as CuFe2O4, Fe3O4, and α-Fe2O3 having peaks very close to that of the host CuO were identified from the Rietveld profile analysis and the SAED pattern of bulk and nanocrystalline Cu0.98Fe0.02O samples. Vibrating Sample Magnetometer (VSM) measurements show hysteresis at 300 K for all the samples. The ferrimagnetic Neel transition temperature () was found to be around 465°C irrespective of the content of “Fe”, which is close to the value of cubic CuFe2O4. High-pressure X-Ray diffraction studies were performed on 2% “Fe”-doped bulk CuO using synchrotron radiation. From the absence of any strong new peaks at high pressure, it is evident that the secondary phases if present could be less than the level of detection. Cu2O, which is diamagnetic by nature, was also doped with 1% of “Fe” and was found to show paramagnetic behavior in contrast to the “Fe” doped CuO. Hence the possibility of intrinsic magnetization of “Fe”-doped CuO apart from the secondary phases is discussed based on the magnetization and charge state of “Fe” and the host into which it is substituted.
Resumo:
The Comprehensive Everglades Restoration includes plans to restore freshwater delivery to Taylor Slough, a shallow drainage basin in the Southern Everglades, ultimately resulting in increased freshwater flow to the downstream Taylor River estuary. The effect of altered hydrologic regime on the transport dynamics of flocculent, estuarine detritus is not well understood. We utilized a paramagnetic sediment tracer to examine detrital transport in three Taylor River pond/creek pairs during early wet versus late wet transition season estuarine flow conditions. Flux of floc tracer was greatest in the downstream direction during all observations, and was most pronounced during the early wet season, coincident with shallower water depth and faster discharge from northern Taylor River. Floc tracer was more likely to move upriver during the late wet/dry season. We observed a floc tracer transport velocity of approximately 1.74 to 1.78 m/day across both seasonal hydrologic conditions. Tracer dynamics were also surprisingly site-dependent, which may highlight the importance of channel geomorphology in regulating hydrologic and sediment transport conditions. Our data suggest that restoration of surface water delivery to Taylor River will influence downstream loading of detritus material into riverine ponds. These detrital inputs have the potential to enhance ecosystem primary productivity and/or secondary productivity.
Resumo:
It is shown that a bosonic formulation of the double-exchange model, one of the classical models for magnetism, generates dynamically a gauge-invariant phase in a finite region of the phase diagram. We use analytical methods, Monte Carlo simulations and finite-size scaling analysis. We study the transition line between that region and the paramagnetic phase. The numerical results show that this transition line belongs to the universality class of the antiferromagnetic RP^(2) model. The fact that one can define a universality class for the antiferromagnetic RP^(2) model, different from the one of the O(N) models, is puzzling and somehow contradicts naive expectations about universality.
Resumo:
Magnetic resonance imaging is a research and clinical tool that has been applied in a wide variety of sciences. One area of magnetic resonance imaging that has exhibited terrific promise and growth in the past decade is magnetic susceptibility imaging. Imaging tissue susceptibility provides insight into the microstructural organization and chemical properties of biological tissues, but this image contrast is not well understood. The purpose of this work is to develop effective approaches to image, assess, and model the mechanisms that generate both isotropic and anisotropic magnetic susceptibility contrast in biological tissues, including myocardium and central nervous system white matter.
This document contains the first report of MRI-measured susceptibility anisotropy in myocardium. Intact mouse heart specimens were scanned using MRI at 9.4 T to ascertain both the magnetic susceptibility and myofiber orientation of the tissue. The susceptibility anisotropy of myocardium was observed and measured by relating the apparent tissue susceptibility as a function of the myofiber angle with respect to the applied magnetic field. A multi-filament model of myocardial tissue revealed that the diamagnetically anisotropy α-helix peptide bonds in myofilament proteins are capable of producing bulk susceptibility anisotropy on a scale measurable by MRI, and are potentially the chief sources of the experimentally observed anisotropy.
The growing use of paramagnetic contrast agents in magnetic susceptibility imaging motivated a series of investigations regarding the effect of these exogenous agents on susceptibility imaging in the brain, heart, and kidney. In each of these organs, gadolinium increases susceptibility contrast and anisotropy, though the enhancements depend on the tissue type, compartmentalization of contrast agent, and complex multi-pool relaxation. In the brain, the introduction of paramagnetic contrast agents actually makes white matter tissue regions appear more diamagnetic relative to the reference susceptibility. Gadolinium-enhanced MRI yields tensor-valued susceptibility images with eigenvectors that more accurately reflect the underlying tissue orientation.
Despite the boost gadolinium provides, tensor-valued susceptibility image reconstruction is prone to image artifacts. A novel algorithm was developed to mitigate these artifacts by incorporating orientation-dependent tissue relaxation information into susceptibility tensor estimation. The technique was verified using a numerical phantom simulation, and improves susceptibility-based tractography in the brain, kidney, and heart. This work represents the first successful application of susceptibility-based tractography to a whole, intact heart.
The knowledge and tools developed throughout the course of this research were then applied to studying mouse models of Alzheimer’s disease in vivo, and studying hypertrophic human myocardium specimens ex vivo. Though a preliminary study using contrast-enhanced quantitative susceptibility mapping has revealed diamagnetic amyloid plaques associated with Alzheimer’s disease in the mouse brain ex vivo, non-contrast susceptibility imaging was unable to precisely identify these plaques in vivo. Susceptibility tensor imaging of human myocardium specimens at 9.4 T shows that susceptibility anisotropy is larger and mean susceptibility is more diamagnetic in hypertrophic tissue than in normal tissue. These findings support the hypothesis that myofilament proteins are a source of susceptibility contrast and anisotropy in myocardium. This collection of preclinical studies provides new tools and context for analyzing tissue structure, chemistry, and health in a variety of organs throughout the body.
Resumo:
This thesis describes an investigation in which we compare Ni(0), Ni(I) and Ni(II) complexes containing 1,3-bis(diphenylphosphino)propane (dppp) as a phosphine ligand for their abilities to effect three types of cross-coupling reactions: Buchwald-Hartwig Amination, Heck-Mizoroki, and Suzuki-Miyaura cross-coupling reactions with different types of substrates. The Ni(0) complex Ni(dppp)2 is known and we have synthesized it via a new procedure involving zinc reduction of the known NiCl2(dppp) in the presence of an excess of dppp. The Ni(0) complex was characterized by NMR spectroscopy and X-ray crystallography. Since Ni(I) complexes of dppp seem unknown, we have synthesized what at this stage appear to be NiXdpppn/[NiX(dppp)n]x (X = Cl, Br, I; n = 1,2, x = 1, 2) by comproportionation of molar equivalents of Ni(dppp)2 and NiX2dppp, X= Cl, Br, I.
Resumo:
The adsorption and photocatalytic degradation of acetate on TiO2 surfaces was investigated in H2O and D2O by ATR-FTIR and EPR Spectroscopy respectively. These studies were carried out in the dark and under UV(A) illumination to gain additional insights into the adsorption behaviour with the identification of paramagnetic species formed during the oxidation of acetate. Isotopic exchange during the adsorption of D2O on TiO2 surface led to different interactions between the adsorbate and OD groups. At different pH levels, several surface complexes of acetate can be formed such as monodentate, or bidentates. Under UV(A) irradiation of TiO2 aqueous suspensions, the formation of hydroxyl and methoxy radicals evidenced as the corresponding spin-adducts, were found to dominate in alkaline and acidic suspensions respectively. Two possible pathways for the oxidation of acetate have been suggested at different pH levels in solution in terms of the source of the spin adduct formed. These proposed pathways were found to be in good agreement with ATR-FTIR and EPR results.
Resumo:
Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications. In the past, metals like Fe, Ni and Co were sought after for various applications though iron was in the forefront because of its cost effectiveness and abundance. Later, alloys based on Fe and Ni were increasingly employed. They were used in magnetic heads and in inductors. Ferrites entered the arena and subsequently most of the newer applications were based on ferrites, a ferrimagnetic material, whose composition can be tuned to tailor the magnetic properties. In the late 1950s a new class of magnetic material emerged on the magnetic horizon and they were fondly known as metallic glasses. They are well known for their soft magnetic properties. They were synthesized in the form of melt spun ribbons and are amorphous in nature and they are projected to replace the crystalline counterparts.
Resumo:
Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications.
Resumo:
Nitrones or azomethine-N-oxides are important precursors for the synthesis of several heterocyclic systems. They belong to the allyl anion type 1,3-dipoles and possess unique structural features which make them extraordinarily useful synthons. They behave as 1,3-dipoles in 1,3-dipolar cycloaddition reactions and as electrophiles in reactions with organometallic reagents. These are the two basic reactions given by nitrones. Nitrones also act as ‘spin traps’ in which they react with short-lived radicals to furnish stable nitroxide radicals which can be detected and identified by electron paramagnetic resonance (EPR) spectroscopy. Recently SmI2 catalysed reductive cross-coupling reactions of nitrones have gained significant interest in which the reactions are initiated by single electron transfer (SET) to nitrones. Apart from these reactions, nitrones are also known to participate in reactions which are initiated by the nucleophilic attack of nitrone-oxygen. In our group, we have also explored the nucleophilic character of nitrones through various reactions. The results obtained enabled us to develop a novel two-step one-pot strategy for quinolines and indoles - the heterocycles renowned for their pharmacological applications, from nitrones and electron deficient acetylenes. Using dibenzoylacetylene and phenylbenzoylacetylene as dipolarophiles, we could introduce a desired functional group at a predetermined position of the quinolines or indoles to be synthesised. In this context, the thesis entitled “NUCLEOPHILIC ADDITION OF NITRONES TO ELECTRON DEFICIENT ACETYLENES AND RELATED STUDIES” portrays our attempt to expand the scope of our x novel synthetic protocol using ester functionalised acetylenes: dimethyl acetylenedicarboxylate (DMAD) and methyl propiolate. The thesis is organised in to five chapters. The first chapter briefly describes the different classes of reactions that nitrone functionality can tolerate. The research problem is defined at the end of this chapter. The second chapter describes the synthesis of different nitrones used for the present study. The optimisation and expansion of scope of the novel strategy towards quinoline synthesis is discussed in the third chapter. The fourth chapter portrays the synthesis of indole-3-carboxylates using the novel strategy. In the fifth chapter, the reaction of N-(2,6-dimethylphenyl) and N-(2,4,6-trimethylphenyl)nitrones are discussed. Here we also discuss the mechanistic reinvestigation of Baldwin’s proposal in the isoxazoline-oxazoline rearrangement. The major outcome of the work is given at the end of the thesis. The structural formulae, schemes, tables and figures are numbered chapter-wise since each chapter of the thesis is organized as an independent unit. All new compounds (except two compounds reported in fourth chapter) are fully characterised on the basis of spectral and analytical data and single crystal X-ray analysis on representative examples. Relevant references are included at the end of individual chapters.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Although the transition metal chemistry of many dialkylamido ligands has been well studied, the chemistry of the bulky di(tert-butyl)amido ligand has been largely overlooked. The di(tert-butyl)amido ligand is well suited for synthesizing transition metal compounds with low coordination numbers; such compounds may exhibit interesting structural, physical, and chemical properties. Di(tert-butyl)amido complexes of transition metals are expected to exhibit high volatilities and low decomposition temperatures, thus making them well suited for the chemical vapor deposition of metals and metal nitrides. Treatment of MnBr₂(THF)₂, FeI₂, CoBr₂(DME), or NiBr₂(DME) with two equivalents of LiN(t-Bu)2 in benzene affords the two-coordinate complex M[N(t-Bu)₂]₂, where M is Mn, Fe, Co, or Ni. Crystallographic studies show that the M-N distances decrease across the series: 1.9365 (Mn), 1.8790 (Fe), 1.845 (Co), 1.798 Å (Ni). The N-M- N angles are very close to linear for Mn and Fe (179.30 and 179.45°, respectively), but bent for Co and Ni (159.2 and 160.90°, respectively). As expected, the d⁵ Mn complex has a magnetic moment of 5.53 μΒ that is very close to the spin only value. The EPR spectrum is nearly axial with a low E/D ratio of 0.014. The d⁶ Fe compound has a room temperature magnetic moment of 5.55 μΒ indicative of a large orbital angular momentum contribution. It does not exhibit a Jahn-Teller distortion despite the expected doubly degenerate ground state. Applied field Mössbauer spectroscopy shows that the effective internal hyperfine field is unusually large, Hint = 105 T. The magnetic moments of Co[N(t-Bu)₂]₂ and Ni[N(t-Bu)₂]₂ are 5.24 and 3.02 μΒ respectively. Both are EPR silent at 4.2 K. Treatment of TiCl₄ with three equivalents of LiN(t-Bu)2 in pentane affords the briding imido compound Ti₂[μ-N(t-Bu)]₂Cl₂[N(t-Bu)₂]₂ via a dealkylation reaction. Rotation around the bis(tert-butyl)amido groups is hindered, with activation parameters of ΔH‡ = 12.8 ± 0.6 kcal mol-1 and ΔS‡ = -8 ± 2 cal K-1 ·mol-1, as evidenced by variable temperature 1H NMR spectroscopy. Treatment of TiCl₄ with two equivalents of HN(t-Bu)₂ affords Ti₂Cl₆[N(t-Bu)₂]₂. This complex shows a close-contact of 2.634(3) Å between Ti and the carbon atom of one of the CH₃ substituents on the tert-butyl groups. Theoretical considerations and detailed structural comparisons suggest this interaction is not agostic in nature, but rather is a consequence of interligand repulsions. Treatment of NiI₂(PPh3)₂ and PdCl₂(PPh₃)₂ with LiN(t-Bu)₂in benzene affords Ni[N(t-Bu)₂](PPh₃)I and Pd₃(μ₂-NBut₂)2(μ₂-PPh₂)Ph(PPh₃) respectively. The compound Ni[N(t-Bu)₂](PPh₃)I has distorted T-shape in geometry, whereas Pd₃(μ₂-NBut₂)₂(μ₂-PPh₂)Ph(PPh₃) contains a triangular palladium core. Manganese nitride films were grown from Mn[N(t-Bu)₂]₂ in the presence of anhydrous ammonia. The growth rate was several nanometers per minute even at the remarkably low temperature of 80⁰C. As grown, the films are carbon- and oxygen-free, and have a columnar morphology. The spacings between the columns become smaller and the films become smoother as the growth temperature is increased. The composition of the films is consistent with a stoichiometry of Mn₅N₂.
Resumo:
Functional nucleic acids (FNA), including nucleic acids catalysts (ribozymes and DNAzymes) and ligands (aptamers), have been discovered in nature or isolated in a laboratory through a process called in vitro selection. They are nucleic acids with functions similar to protein enzymes or antibodies. They have been developed into sensors with high sensitivity and selectivity; it is realized by converting the reaction catalyzed by a DNAzyme/ribozyme or the binding event of an aptamer to a fluorescent, colorimetric or electrochemical signal. While a number of studies have been reported for in vitro sensing using DNAzymes or aptamers, there are few reports on in vivo sensing or imaging. MRI is a non-invasive imaging technique; smart MRI contrast agents were synthesized for molecular imaging purposes. However, their rational design remains a challenge due to the difficulty to predict molecular interactions. Chapter 2 focuses on rational design of smart T1-weighted MRI contrast agents with high specificity based on DNAzymes and aptamers. It was realized by changing the molecular weight of the gadolinium conjugated DNA strand with the analytes, which lead to analyte-specific water proton relaxation responses and contrast changes on an MRI image. The designs are general; the high selectivity of FNA was retained. Most FNA-based fluorescent sensors require covalent labeling of fluorophore/quencher to FNAs, which incurrs extra expenses and could interfere the function of FNAs. Chapter 3 describes a new sensor design avoiding the covalent labeling of fluorophore and quencher. The fluorescence of malachite green (MG) was regulated by the presence of adenosine. Conjugate of aptamers of MG and adenosine and a bridge strand were annealed in a solution containing MG. The MG aptamer did not bind MG because of its hybridization to the bridge strand, resulting in low fluorescence signal of MG. The hybridization was weakened in the presence of adenosine, leading to the binding of MG to its aptamer and a fluorescence increase. The sensor has comparable detection limit (20 micromolar) and specificity to its labeled derivatives. Enzymatic activity of most DNAzymes requires metal cations. The research on the metal-DNAzyme interaction is of interest and challenge to scientists because of the lack of structural information. Chapters 4 presents the research on the characterization of the interaction between a Cu2+-dependent DNAzyme and Cu2+. Electron paramagnetic resonance (EPR) and UV-Vis spectroscopy were used to probe the binding of Cu2+ to the DNAzyme; circular dichroism was used to probe the conformational change of the DNAzyme induced by Cu2+. It was proposed that the conformational change by the Cu2+ binding is important for the activity of the DNAzyme. Chapter 5 reports the dependence of the activity of 8-17 DNAzyme on the presence of both Pb2+ and other metal cations including Zn2+, Cd2+ and Mg2+. It was discovered that presence of those metal cations can be cooperative or inhibitive to 8-17 activity. It is hypothesized that the 8-17 DNAzyme had multiple binding sites for metal cations based on the results. Cisplatin is effective killing tumor cells, but with significant side effects, which can be minimized by its targeted delivery. Chapter 6 focuses on the effort to functionalize liposomes encapsulating cisplatin by an aptamer that selectively bind nucleolin, an overexpressed protein by breast cancer cells. The study proved the selective cytotoxicity to breast cancer cells of the aptamer-functionalized liposome.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Ceilândia, Programa de Pós-graduação em Ciências e Tecnologias em Saúde, 2015.