801 resultados para online media
Resumo:
This magazine, written by Melissa Giles, features three Brisbane-based media organisations: Radio 4RPH, Queensland Pride and 98.9FM. The PDF file on this website contains a text-only version of the magazine. Contact the author if you would like a copy of the text-only EPUB file or a copy of the full digital magazine with images. An audio version of the magazine is available at http://eprints.qut.edu.au/41729/
Resumo:
In this chapter, Shaleen Prowse describes teaching strategies for media education and information communication technologies (ICT) and how young children’s experiences with tools of technology at home are an important starting point for building learning experiences within the classroom setting. She illustrates how digital cameras and computer editing software assist young children to share their learning.
Resumo:
This article reviews some key critical writing about the commodification or exploitation of networked social relations in the creative industries. Through a comparative case study of networks in fashion and new media industries in the city of Manchester, UK, the article draws attention to the social, cultural and aesthetic aspects of the networks among creative practitioners. It argues that within the increasing commercialisation in the creative industries there are networked spaces within which non-instrumental values are created. The building of social networks reflects on the issue of how creatives perceive their work in these industries both economically and socially/culturally.
Resumo:
Healthy and sustainable food is gaining more attention from consumers, industry, and researchers. Yet many approaches to date are limited to information dissemination, advertisement or education. We have embarked on a three year collaborative research project (2011 – 2013) to explore urban food practices – eating, cooking, growing food – to support the well-being of people and the environment. Our overall goal is to employ a user-centred interaction design research approach to inform the development of entertaining, real-time, mobile and networked applications, engaging playful feedback to build motivation. Our aspiration for this study is to deliver usable and useful mobile and situated interaction prototypes that employ individual and group strategies to foster food cultures that provide new pathways to produce, share and enjoy food that is green, healthy, and fun.
Resumo:
Awareness of the power of the mass media to communicate images of protest to global audiences and, in so doing, to capture space in global media discourses is a central feature of the transnational protest movement. A number of protest movements have formed around opposition to concepts and practices that operate beyond national borders, such as neoliberal globalization or threats to the environment. However, transnational protests also involve more geographically discreet issues such as claims to national independence or greater religious or political freedom by groups within specific national contexts. Appealing to the international community for support is a familiar strategy for communities who feel that they are being discriminated against or ignored by a national government.
Resumo:
The advent of e-learning has seen the adaptation and use of a plethora of educational techniques. Of these, online discussion forums have met with success and been used widely in both undergraduate and postgraduate education. The authors of this paper, having previously used online discussion forums in the postgraduate arena with success, adopted this approach for the design and subsequent delivery of a learning and teaching subject. This learning and teaching subject, however, was part of an international collaboration and designed for nurse academics in another country – Vietnam. With the nursing curriculum in Vietnam currently moving to adopt a competency based approach, two learning and teaching subjects were designed by an Australian university for Vietnamese nurse academics. Subject materials constituted a DVD which arrived by post and access to an online platform. Assessment for the subject included (but was not limited to) mandatory participation in online discussion with the other nurse academics enrolled in the subject. The purpose behind the online discussion was to generate discourse between the Vietnamese nurse academics located across Vietnam. Consequently the online discussions occurred in both Vietnamese and English; the Australian academic moderating the discussion did so in Australia with a Vietnamese translator. For the Australian University delivering this subject the difference between this and past online discussions were twofold: delivery was in a foreign language; and the teaching experience of the Vietnamese nurse teachers was mixed and frequently very limited. This paper will provide a discussion addressing the design of an online learning environment for foreign correspondents, the resources and translation required to maximise the success of the online discussion, the lessons learnt and consequent changes made, as well as the rationale of delivering complex content in a foreign language. While specifically addressing the first iteration of the first learning module designed, this paper will also address subsequent changes made for the second iteration of the first module and comment on their success. While a translator is clearly a key component of success, the elements of simplicity and clarity in hand with supportive online moderation must not be overlooked.
Resumo:
‘Everybody is science conscious these days’ – so started the inaugural week of Frontiers of Science, a self described ‘intelligently presented and attractively drawn’ science-based comic strip published in the Sydney Morning Herald from 1961 to 1982 and ultimately syndicated to daily newspapers around the world. An archive of the first 200 Frontiers of Science comic strips (1961−65) has been made freely available online through an initiative of the University of Sydney Library. While the 1960s public interest in evolution, space exploration, and the Cold War have given way to the twenty-first century concerns about global warming, genetic engineering, and alternative energy sources, it is fair to say that everybody is still science conscious. Frontiers of Science provides an interesting and nostalgic insight into 1960s popular science through an unusual mode of dissemination.
Resumo:
In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.
Resumo:
In many prediction problems, including those that arise in computer security and computational finance, the process generating the data is best modelled as an adversary with whom the predictor competes. Even decision problems that are not inherently adversarial can be usefully modeled in this way, since the assumptions are sufficiently weak that effective prediction strategies for adversarial settings are very widely applicable.
Resumo:
We consider the problem of choosing, sequentially, a map which assigns elements of a set A to a few elements of a set B. On each round, the algorithm suffers some cost associated with the chosen assignment, and the goal is to minimize the cumulative loss of these choices relative to the best map on the entire sequence. Even though the offline problem of finding the best map is provably hard, we show that there is an equivalent online approximation algorithm, Randomized Map Prediction (RMP), that is efficient and performs nearly as well. While drawing upon results from the "Online Prediction with Expert Advice" setting, we show how RMP can be utilized as an online approach to several standard batch problems. We apply RMP to online clustering as well as online feature selection and, surprisingly, RMP often outperforms the standard batch algorithms on these problems.
Resumo:
This chapter explores some of the practical and theoretical obstacles and opportunities for self-expression experienced by a group of Queer Dig- ital Storytellers who primarily make and distribute their stories online. “Queer” in this chapter encompasses a diverse range of gender and sexual identities and perspectives on same, including the heterosexual children of queer parents and heterosexual parents of queer children. As such it is also used as a unifying moniker by participants in the Rainbow Family Tree case study that is examined in this chapter. The Digital Storytellers in this case study are largely motivated by a desire to have an impact on social attitudes towards gender and sexuality, both in their personal province of friends and family, and in public domains constituted of unknown or invisible audiences. The privacy and publicity dilemmas that will be considered arise out of positioning personal stories in the public domain and the quandaries that emerge from an activist desire to speak truth to power that is located across a wide cross section of audiences.
Resumo:
Online learning algorithms have recently risen to prominence due to their strong theoretical guarantees and an increasing number of practical applications for large-scale data analysis problems. In this paper, we analyze a class of online learning algorithms based on fixed potentials and nonlinearized losses, which yields algorithms with implicit update rules. We show how to efficiently compute these updates, and we prove regret bounds for the algorithms. We apply our formulation to several special cases where our approach has benefits over existing online learning methods. In particular, we provide improved algorithms and bounds for the online metric learning problem, and show improved robustness for online linear prediction problems. Results over a variety of data sets demonstrate the advantages of our framework.
Resumo:
A number of learning problems can be cast as an Online Convex Game: on each round, a learner makes a prediction x from a convex set, the environment plays a loss function f, and the learner’s long-term goal is to minimize regret. Algorithms have been proposed by Zinkevich, when f is assumed to be convex, and Hazan et al., when f is assumed to be strongly convex, that have provably low regret. We consider these two settings and analyze such games from a minimax perspective, proving minimax strategies and lower bounds in each case. These results prove that the existing algorithms are essentially optimal.
Resumo:
In this paper we examine the problem of prediction with expert advice in a setup where the learner is presented with a sequence of examples coming from different tasks. In order for the learner to be able to benefit from performing multiple tasks simultaneously, we make assumptions of task relatedness by constraining the comparator to use a lesser number of best experts than the number of tasks. We show how this corresponds naturally to learning under spectral or structural matrix constraints, and propose regularization techniques to enforce the constraints. The regularization techniques proposed here are interesting in their own right and multitask learning is just one application for the ideas. A theoretical analysis of one such regularizer is performed, and a regret bound that shows benefits of this setup is reported.
Resumo:
We demonstrate a modification of the algorithm of Dani et al for the online linear optimization problem in the bandit setting, which allows us to achieve an O( \sqrt{T ln T} ) regret bound in high probability against an adaptive adversary, as opposed to the in expectation result against an oblivious adversary of Dani et al. We obtain the same dependence on the dimension as that exhibited by Dani et al. The results of this paper rest firmly on those of Dani et al and the remarkable technique of Auer et al for obtaining high-probability bounds via optimistic estimates. This paper answers an open question: it eliminates the gap between the high-probability bounds obtained in the full-information vs bandit settings.