841 resultados para object representations
Resumo:
Previous functional imaging studies have shown that facilitated processing of a visual object on repeated, relative to initial, presentation (i.e., repetition priming) is associated with reductions in neural activity in multiple regions, including fusiforin/lateral occipital cortex. Moreover, activity reductions have been found, at diminished levels, when a different exemplar of an object is presented on repetition. In one previous study, the magnitude of diminished priming across exemplars was greater in the right relative to the left fusiform, suggesting greater exemplar specificity in the right. Another previous study, however, observed fusiform lateralization modulated by object viewpoint, but not object exemplar. The present fMRI study sought to determine whether the result of differential fusiform responses for perceptually different exemplars could be replicated. Furthermore, the role of the left fusiform cortex in object recognition was investigated via the inclusion of a lexical/semantic manipulation. Right fusiform cortex showed a significantly greater effect of exemplar change than left fusiform, replicating the previous result of exemplar-specific fusiform lateralization. Right fusiform and lateral occipital cortex were not differentially engaged by the lexical/semantic manipulation, suggesting that their role in visual object recognition is predominantly in the. C visual discrimination of specific objects. Activation in left fusiform cortex, but not left lateral occipital cortex, was modulated by both exemplar change and lexical/semantic manipulation, with further analysis suggesting a posterior-to-anterior progression between regions involved in processing visuoperceptual and lexical/semantic information about objects. The results are consistent with the view that the right fusiform plays a greater role in processing specific visual form information about objects, whereas the left fusiform is also involved in lexical/semantic processing. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Between 8 and 40% of Parkinson disease (PD) patients will have visual hallucinations (VHs) during the course of their illness. Although cognitive impairment has been identified as a risk factor for hallucinations, more specific neuropsychological deficits underlying such phenomena have not been established. Research in psychopathology has converged to suggest that hallucinations are associated with confusion between internal representations of events and real events (i.e. impaired-source monitoring). We evaluated three groups: 17 Parkinson's patients with visual hallucinations, 20 Parkinson's patients without hallucinations and 20 age-matched controls, using tests of visual imagery, visual perception and memory, including tests of source monitoring and recollective experience. The study revealed that Parkinson's patients with hallucinations appear to have intact visual imagery processes and spatial perception. However, there were impairments in object perception and recognition memory, and poor recollection of the encoding episode in comparison to both non-hallucinating Parkinson's patients and healthy controls. Errors were especially likely to occur when encoding and retrieval cues were in different modalities. The findings raise the possibility that visual hallucinations in Parkinson's patients could stem from a combination of faulty perceptual processing of environmental stimuli, and less detailed recollection of experience combined with intact image generation. (C) 2002 Elsevier Science Ltd. All fights reserved.
Resumo:
This paper addresses the requirements for a Work/flow Management System that is intended to automate the production and distribution chain for cross-media content which is by nature multi-partner and multi-site. It advocates the requirements for an ontology-based object lifecycle tracking within work/flow integration by identifying various types of interfaces, object life cycles and the work-flow interaction environments within the AXMEDIS Framework.
Resumo:
There has been a clear lack of common data exchange semantics for inter-organisational workflow management systems where the research has mainly focused on technical issues rather than language constructs. This paper presents the neutral data exchanges semantics required for the workflow integration within the AXAEDIS framework and presents the mechanism for object discovery from the object repository where little or no knowledge about the object is available. The paper also presents workflow independent integration architecture with the AXAEDIS Framework.
Resumo:
A technique is presented for locating and tracking objects in cluttered environments. Agents are randomly distributed across the image, and subsequently grouped around targets. Each agent uses a weightless neural network and a histogram intersection technique to score its location. The system has been used to locate and track a head in 320x240 resolution video at up to 15fps.
Resumo:
A self study course for learning to program using the C programming language has been developed. A Learning Object approach was used in the design of the course. One of the benefits of the Learning Object approach is that the learning material can be reused for different purposes. 'Me course developed is designed so that learners can choose the pedagogical approach most suited to their personal learning requirements. For all learning approaches a set of common Assessment Learning Objects (ALOs or tests) have been created. The design of formative assessments with ALOs can be carried out by the Instructional Designer grouping ALOs to correspond to a specific assessment intention. The course is non-credit earning, so there is no summative assessment, all assessment is formative. In this paper examples of ALOs and their uses is presented together with their uses as decided by the Instructional Designer and learner. Personalisation of the formative assessment of skills can be decided by the Instructional Designer or the learner using a repository of pre-designed ALOs. The process of combining ALOs can be carried out manually or in a semi-automated way using metadata that describes the ALO and the skill it is designed to assess.
Resumo:
In the past decade, airborne based LIght Detection And Ranging (LIDAR) has been recognised by both the commercial and public sectors as a reliable and accurate source for land surveying in environmental, engineering and civil applications. Commonly, the first task to investigate LIDAR point clouds is to separate ground and object points. Skewness Balancing has been proven to be an efficient non-parametric unsupervised classification algorithm to address this challenge. Initially developed for moderate terrain, this algorithm needs to be adapted to handle sloped terrain. This paper addresses the difficulty of object and ground point separation in LIDAR data in hilly terrain. A case study on a diverse LIDAR data set in terms of data provider, resolution and LIDAR echo has been carried out. Several sites in urban and rural areas with man-made structure and vegetation in moderate and hilly terrain have been investigated and three categories have been identified. A deeper investigation on an urban scene with a river bank has been selected to extend the existing algorithm. The results show that an iterative use of Skewness Balancing is suitable for sloped terrain.
Resumo:
Light Detection And Ranging (LIDAR) is an important modality in terrain and land surveying for many environmental, engineering and civil applications. This paper presents the framework for a recently developed unsupervised classification algorithm called Skewness Balancing for object and ground point separation in airborne LIDAR data. The main advantages of the algorithm are threshold-freedom and independence from LIDAR data format and resolution, while preserving object and terrain details. The framework for Skewness Balancing has been built in this contribution with a prediction model in which unknown LIDAR tiles can be categorised as “hilly” or “moderate” terrains. Accuracy assessment of the model is carried out using cross-validation with an overall accuracy of 95%. An extension to the algorithm is developed to address the overclassification issue for hilly terrain. For moderate terrain, the results show that from the classified tiles detached objects (buildings and vegetation) and attached objects (bridges and motorway junctions) are separated from bare earth (ground, roads and yards) which makes Skewness Balancing ideal to be integrated into geographic information system (GIS) software packages.