994 resultados para neural differentiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The What-and-Where filter forms part of a neural network architecture for spatial mapping, object recognition, and image understanding. The Where fllter responds to an image figure that has been separated from its background. It generates a spatial map whose cell activations simultaneously represent the position, orientation, ancl size of all tbe figures in a scene (where they are). This spatial map may he used to direct spatially localized attention to these image features. A multiscale array of oriented detectors, followed by competitve and interpolative interactions between position, orientation, and size scales, is used to define the Where filter. This analysis discloses several issues that need to be dealt with by a spatial mapping system that is based upon oriented filters, such as the role of cliff filters with and without normalization, the double peak problem of maximum orientation across size scale, and the different self-similar interpolation properties across orientation than across size scale. Several computationally efficient Where filters are proposed. The Where filter rnay be used for parallel transformation of multiple image figures into invariant representations that are insensitive to the figures' original position, orientation, and size. These invariant figural representations form part of a system devoted to attentive object learning and recognition (what it is). Unlike some alternative models where serial search for a target occurs, a What and Where representation can he used to rapidly search in parallel for a desired target in a scene. Such a representation can also be used to learn multidimensional representations of objects and their spatial relationships for purposes of image understanding. The What-and-Where filter is inspired by neurobiological data showing that a Where processing stream in the cerebral cortex is used for attentive spatial localization and orientation, whereas a What processing stream is used for attentive object learning and recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural model is described of how the brain may autonomously learn a body-centered representation of 3-D target position by combining information about retinal target position, eye position, and head position in real time. Such a body-centered spatial representation enables accurate movement commands to the limbs to be generated despite changes in the spatial relationships between the eyes, head, body, and limbs through time. The model learns a vector representation--otherwise known as a parcellated distributed representation--of target vergence with respect to the two eyes, and of the horizontal and vertical spherical angles of the target with respect to a cyclopean egocenter. Such a vergence-spherical representation has been reported in the caudal midbrain and medulla of the frog, as well as in psychophysical movement studies in humans. A head-centered vergence-spherical representation of foveated target position can be generated by two stages of opponent processing that combine corollary discharges of outflow movement signals to the two eyes. Sums and differences of opponent signals define angular and vergence coordinates, respectively. The head-centered representation interacts with a binocular visual representation of non-foveated target position to learn a visuomotor representation of both foveated and non-foveated target position that is capable of commanding yoked eye movementes. This head-centered vector representation also interacts with representations of neck movement commands to learn a body-centered estimate of target position that is capable of commanding coordinated arm movements. Learning occurs during head movements made while gaze remains fixed on a foveated target. An initial estimate is stored and a VOR-mediated gating signal prevents the stored estimate from being reset during a gaze-maintaining head movement. As the head moves, new estimates arc compared with the stored estimate to compute difference vectors which act as error signals that drive the learning process, as well as control the on-line merging of multimodal information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new neural network architecture for spatial patttern recognition using multi-scale pyramida1 coding is here described. The network has an ARTMAP structure with a new class of ART-module, called Hybrid ART-module, as its front-end processor. Hybrid ART-module, which has processing modules corresponding to each scale channel of multi-scale pyramid, employs channels of finer scales only if it is necesssary to discriminate a pattern from others. This process is effected by serial match tracking. Also the parallel match tracking is used to select the spatial location having most salient feature and limit its attention to that part.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a constantly changing world, humans are adapted to alternate routinely between attending to familiar objects and testing hypotheses about novel ones. We can rapidly learn to recognize and narne novel objects without unselectively disrupting our memories of familiar ones. We can notice fine details that differentiate nearly identical objects and generalize across broad classes of dissimilar objects. This chapter describes a class of self-organizing neural network architectures--called ARTMAP-- that are capable of fast, yet stable, on-line recognition learning, hypothesis testing, and naming in response to an arbitrary stream of input patterns (Carpenter, Grossberg, Markuzon, Reynolds, and Rosen, 1992; Carpenter, Grossberg, and Reynolds, 1991). The intrinsic stability of ARTMAP allows the system to learn incrementally for an unlimited period of time. System stability properties can be traced to the structure of its learned memories, which encode clusters of attended features into its recognition categories, rather than slow averages of category inputs. The level of detail in the learned attentional focus is determined moment-by-moment, depending on predictive success: an error due to over-generalization automatically focuses attention on additional input details enough of which are learned in a new recognition category so that the predictive error will not be repeated. An ARTMAP system creates an evolving map between a variable number of learned categories that compress one feature space (e.g., visual features) to learned categories of another feature space (e.g., auditory features). Input vectors can be either binary or analog. Computational properties of the networks enable them to perform significantly better in benchmark studies than alternative machine learning, genetic algorithm, or neural network models. Some of the critical problems that challenge and constrain any such autonomous learning system will next be illustrated. Design principles that work together to solve these problems are then outlined. These principles are realized in the ARTMAP architecture, which is specified as an algorithm. Finally, ARTMAP dynamics are illustrated by means of a series of benchmark simulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a neural network model that addresses the acquisition of speaking skills by infants and subsequent motor equivalent production of speech sounds. The model learns two mappings during a babbling phase. A phonetic-to-orosensory mapping specifies a vocal tract target for each speech sound; these targets take the form of convex regions in orosensory coordinates defining the shape of the vocal tract. The babbling process wherein these convex region targets are formed explains how an infant can learn phoneme-specific and language-specific limits on acceptable variability of articulator movements. The model also learns an orosensory-to-articulatory mapping wherein cells coding desired movement directions in orosensory space learn articulator movements that achieve these orosensory movement directions. The resulting mapping provides a natural explanation for the formation of coordinative structures. This mapping also makes efficient use of redundancy in the articulator system, thereby providing the model with motor equivalent capabilities. Simulations verify the model's ability to compensate for constraints or perturbations applied to the articulators automatically and without new learning and to explain contextual variability seen in human speech production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article introduces an unsupervised neural architecture for the control of a mobile robot. The system allows incremental learning of the plant during robot operation, with robust performance despite unexpected changes of robot parameters such as wheel radius and inter-wheel distance. The model combines Vector associative Map (VAM) learning and associate learning, enabling the robot to reach targets at arbitrary distances without knowledge of the robot kinematics and without trajectory recording, but relating wheel velocities with robot movements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural model is presented of how cortical areas V1, V2, and V4 interact to convert a textured 2D image into a representation of curved 3D shape. Two basic problems are solved to achieve this: (1) Patterns of spatially discrete 2D texture elements are transformed into a spatially smooth surface representation of 3D shape. (2) Changes in the statistical properties of texture elements across space induce the perceived 3D shape of this surface representation. This is achieved in the model through multiple-scale filtering of a 2D image, followed by a cooperative-competitive grouping network that coherently binds texture elements into boundary webs at the appropriate depths using a scale-to-depth map and a subsequent depth competition stage. These boundary webs then gate filling-in of surface lightness signals in order to form a smooth 3D surface percept. The model quantitatively simulates challenging psychophysical data about perception of prolate ellipsoids (Todd and Akerstrom, 1987, J. Exp. Psych., 13, 242). In particular, the model represents a high degree of 3D curvature for a certain class of images, all of whose texture elements have the same degree of optical compression, in accordance with percepts of human observers. Simulations of 3D percepts of an elliptical cylinder, a slanted plane, and a photo of a golf ball are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The origin of the tri-phasic burst pattern, observed in the EMGs of opponent muscles during rapid self-terminated movements, has been controversial. Here we show by computer simulation that the pattern emerges from interactions between a central neural trajectory controller (VITE circuit) and a peripheral neuromuscularforce controller (FLETE circuit). Both neural models have been derived from simple functional constraints that have led to principled explanations of a wide variety of behavioral and neurobiological data, including, as shown here, the generation of tri-phasic bursts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article introduces a quantitative model of early visual system function. The model is formulated to unify analyses of spatial and temporal information processing by the nervous system. Functional constraints of the model suggest mechanisms analogous to photoreceptors, bipolar cells, and retinal ganglion cells, which can be formally represented with first order differential equations. Preliminary numerical simulations and analytical results show that the same formal mechanisms can explain the behavior of both X (linear) and Y (nonlinear) retinal ganglion cell classes by simple changes in the relative width of the receptive field (RF) center and surround mechanisms. Specifically, an increase in the width of the RF center results in a change from X-like to Y-like response, in agreement with anatomical data on the relationship between α- and

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural network model, called an FBF network, is proposed for automatic parallel separation of multiple image figures from each other and their backgrounds in noisy grayscale or multi-colored images. The figures can then be processed in parallel by an array of self-organizing Adaptive Resonance Theory (ART) neural networks for automatic target recognition. An FBF network can automatically separate the disconnected but interleaved spirals that Minsky and Papert introduced in their book Perceptrons. The network's design also clarifies why humans cannot rapidly separate interleaved spirals, yet can rapidly detect conjunctions of disparity and color, or of disparity and motion, that distinguish target figures from surrounding distractors. Figure-ground separation is accomplished by iterating operations of a Feature Contour System (FCS) and a Boundary Contour System (BCS) in the order FCS-BCS-FCS, hence the term FBF, that have been derived from an analysis of biological vision. The FCS operations include the use of nonlinear shunting networks to compensate for variable illumination and nonlinear diffusion networks to control filling-in. A key new feature of an FBF network is the use of filling-in for figure-ground separation. The BCS operations include oriented filters joined to competitive and cooperative interactions designed to detect, regularize, and complete boundaries in up to 50 percent noise, while suppressing the noise. A modified CORT-X filter is described which uses both on-cells and off-cells to generate a boundary segmentation from a noisy image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning, whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking, and causes symptoms of medial temporal amnesia. It suggests how normal acquisition of subcortical emotional conditioning can occur after cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an increase in the intensity of a conditioned stimulus "speeds up the clock", but an increase in the intensity of an unconditioned stimulus does not. Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary and secondary adaptively timed conditioning are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing ISis, partial reinforcement, and multiple stimuli that lead to time-averaging of responses. Neurobiologically testable predictions are made to facilitate further tests of the model.