838 resultados para network congestion control


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this research was to improve the quantitative support to project planning and control principally through the use of more accurate forecasting for which new techniques were developed. This study arose from the observation that in most cases construction project forecasts were based on a methodology (c.1980) which relied on the DHSS cumulative cubic cost model and network based risk analysis (PERT). The former of these, in particular, imposes severe limitations which this study overcomes. Three areas of study were identified, namely growth curve forecasting, risk analysis and the interface of these quantitative techniques with project management. These fields have been used as a basis for the research programme. In order to give a sound basis for the research, industrial support was sought. This resulted in both the acquisition of cost profiles for a large number of projects and the opportunity to validate practical implementation. The outcome of this research project was deemed successful both in theory and practice. The new forecasting theory was shown to give major reductions in projection errors. The integration of the new predictive and risk analysis technologies with management principles, allowed the development of a viable software management aid which fills an acknowledged gap in current technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in the pattern of activity of neurones within the basal ganglia are relevant in the pathophysiology and symptoms of Parkinson’s disease. The globus pallidus (GP) – subthalamic nucleus (STN) network has been proposed to form a pacemaker driving regenerative synchronous bursting activity. In order to test whether this activity can be sustained in vitro a 20o parasagittal slice of mouse midbrain was developed which preserved functional connectivity between the STN and GP. Mouse STN and GP cells were characterised electrophysiologically by the presence or absence of a voltage sag in response to hyperpolarising current steps indicative of Ih and the presence of rebound depolarisations. The presence of evoked and spontaneous post-synaptic GABA and glutamatergic currents indicated functional connectivity between the STN and GP. In control slices, STN cells fired action potentials at a regular rate, activity which was unaffected by bath application of the GABAA receptor antagonist picrotoxin (50 μM) or the glutamate receptor antagonist CNQX (10 μM). Paired extracellular recordings of STN cells showed uncorrelated firing. Oscillatory burst activity was induced pharmacologically using the glutamate receptor agonist, NMDA (20 μM), in combination with the potassium channel blocker apamin (50 -100 nM). The burst activity was unaffected by bath application of picrotoxin or CNQX while paired STN recordings showed uncorrelated activity indicating that the activity is not produced by the neuronal network. Thus, no regenerative activity is evident in this mouse brain preparation, either in control slices or when bursting is pharmacologically induced, suggesting the requirement of other afferent inputs that are not present in the slice. Using single-unit extracellular recording, dopamine (30 μM) produced an excitation of STN cells. This excitation was independent of synaptic transmission and was mimicked by both the Dl-like receptor agonist SKF38393 (10 μM) and the D2-like receptor agonist quinpirole (10 μM). However, the excitation was partially reduced by the D1-like antagonist SCH23390 (2 μM) but not by the D2-like antagonists sulpiride (10 μM) and eticlopride (10 μM). Using whole-recordings, dopamine was shown to induce membrane depolarisation. This depolarisation was caused either by a D1-like receptor mediated increase in a conductance which reversed at -34 mV, consistent with a non-specific cation conductance, or a D2-like receptor mediated decrease in conductance which reversed around -100 mV, consistent with a potassium conductance. Bath application of dopamine altered the pattern of the burst-firing produced by NMDA an apamin towards a more regular pattern. This effect was associated with a decrease in amplitude and ll1crease in frequency of TTX-resistant plateau potentials which underlie the burst activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many manufacturing companies have long endured the problems associated with the presence of `islands of automation'. Due to rapid computerisation, `islands' such as Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), Flexible Manufacturing Systems (FMS) and Material Requirement Planning (MRP), have emerged, and with a lack of co-ordination, often lead to inefficient performance of the overall system. The main objective of Computer-Integrated Manufacturing (CIM) technology is to form a cohesive network between these islands. Unfortunately, a commonly used approach - the centralised system approach, has imposed major technical constraints and design complication on development strategies. As a consequence, small companies have experienced difficulties in participating in CIM technology. The research described in this thesis has aimed to examine alternative approaches to CIM system design. Through research and experimentation, the cellular system approach, which has existed in the form of manufacturing layouts, has been found to simplify the complexity of an integrated manufacturing system, leading to better control and far higher system flexibility. Based on the cellular principle, some central management functions have also been distributed to smaller cells within the system. This concept is known, specifically, as distributed planning and control. Through the development of an embryo cellular CIM system, the influence of both the cellular principle and the distribution methodology have been evaluated. Based on the evidence obtained, it has been concluded that distributed planning and control methodology can greatly enhance cellular features within an integrated system. Both the cellular system approach and the distributed control concept will therefore make significant contributions to the design of future CIM systems, particularly systems designed with respect to small company requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computerised production control developments have concentrated on Manufacturing Resources Planning (MRP II) systems. The literature suggests however, that despite the massive investment in hardware, software and management education, successful implementation of such systems in manufacturing industries has proved difficult. This thesis reviews the development of production planning and control systems, in particular, investigates the causes of failures in implementing MRP/MRP II systems in industrial environments and argues that the centralised and top-down planning structure, as well as the routine operational methodology of such systems, is inherently prone to failure. The thesis reviews the control benefits of cellular manufacturing systems but concludes that in more dynamic manufacturing environments, techniques such as Kanban are inappropriate. The basic shortcomings of MRP II systems are highlighted and a new enhanced operational methodology based on distributed planning and control principles is introduced. Distributed Manufacturing Resources Planning (DMRP), was developed as a capacity sensitive production planning and control solution for cellular manufacturing environments. The system utilises cell based, independently operated MRP II systems, integrated into a plant-wide control system through a Local Area Network. The potential benefits of adopting the system in industrial environments is discussed and the results of computer simulation experiments to compare the performance of the DMRP system against the conventional MRP II systems presented. DMRP methodology is shown to offer significant potential advantages which include ease of implementation, cost effectiveness, capacity sensitivity, shorter manufacturing lead times, lower working in progress levels and improved customer service.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current optical communications network consists of point-to-point optical transmission paths interconnected with relatively low-speed electronic switching and routing devices. As the demand for capacity increases, then higher speed electronic devices will become necessary. It is however hard to realise electronic chip-sets above 10 Gbit/s, and therefore to increase the achievable performance of the network, electro-optic and all-optic switching and routing architectures are being investigated. This thesis aims to provide a detailed experimental analysis of high-speed optical processing within an optical time division multiplexed (OTDM) network node. This includes the functions of demultiplexing, 'drop and insert' multiplexing, data regeneration, and clock recovery. It examines the possibilities of combining these tasks using a single device. Two optical switching technologies are explored. The first is an all-optical device known as 'semiconductor optical amplifier-based nonlinear optical loop mirror' (SOA-NOLM). Switching is achieved by using an intense 'control' pulse to induce a phase shift in a low-intensity signal propagating through an interferometer. Simultaneous demultiplexing, data regeneration and clock recovery are demonstrated for the first time using a single SOA-NOLM. The second device is an electroabsorption (EA) modulator, which until this thesis had been used in a uni-directional configuration to achieve picosecond pulse generation, data encoding, demultiplexing, and 'drop and insert' multiplexing. This thesis presents results on the use of an EA modulator in a novel bi-directional configuration. Two independent channels are demultiplexed from a high-speed OTDM data stream using a single device. Simultaneous demultiplexing with stable, ultra-low jitter clock recovery is demonstrated, and then used in a self-contained 40 Gbit/s 'drop and insert' node. Finally, a 10 GHz source is analysed that exploits the EA modulator bi-directionality to increase the pulse extinction ratio to a level where it could be used in an 80 Gbit/s OTDM network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Speed's theory makes two predictions for the development of analogical reasoning. Firstly, young children should not be able to reason analogically due to an undeveloped PFC neural network. Secondly, category knowledge enables the reinforcement of structural features over surface features, and thus the development of sophisticated, analogical, reasoning. We outline existing studies that support these predictions and highlight some critical remaining issues. Specifically, we argue that the development of inhibition must be directly compared alongside the development of reasoning strategies in order to support Speed's account. © 2010 Psychology Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates a cross-layer design approach for minimizing energy consumption and maximizing network lifetime (NL) of a multiple-source and single-sink (MSSS) WSN with energy constraints. The optimization problem for MSSS WSN can be formulated as a mixed integer convex optimization problem with the adoption of time division multiple access (TDMA) in medium access control (MAC) layer, and it becomes a convex problem by relaxing the integer constraint on time slots. Impacts of data rate, link access and routing are jointly taken into account in the optimization problem formulation. Both linear and planar network topologies are considered for NL maximization (NLM). With linear MSSS and planar single-source and single-sink (SSSS) topologies, we successfully use Karush-Kuhn-Tucker (KKT) optimality conditions to derive analytical expressions of the optimal NL when all nodes are exhausted simultaneously. The problem for planar MSSS topology is more complicated, and a decomposition and combination (D&C) approach is proposed to compute suboptimal solutions. An analytical expression of the suboptimal NL is derived for a small scale planar network. To deal with larger scale planar network, an iterative algorithm is proposed for the D&C approach. Numerical results show that the upper-bounds of the network lifetime obtained by our proposed optimization models are tight. Important insights into the NL and benefits of cross-layer design for WSN NLM are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dedicated Short Range Communication (DSRC) is a promising technique for vehicle ad-hoc network (VANET) and collaborative road safety applications. As road safety applications require strict quality of services (QoS) from the VANET, it is crucial for DSRC to provide timely and reliable communications to make safety applications successful. In this paper we propose two adaptive message rate control algorithms for low priority safety messages, in order to provide highly available channel for high priority emergency messages while improve channel utilization. In the algorithms each vehicle monitors channel loads and independently controls message rate by a modified additive increase and multiplicative decrease (AIMD) method. Simulation results demonstrated the effectiveness of the proposed rate control algorithms in adapting to dynamic traffic load.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a two phases control method for DSRC vehicle networks at road intersection, where multiple road safety applications may coexist. We consider two safety applications, emergency safety application with high priority and routine safety applications with low priority. The control method is designed to provide high availability and low latency for emergency safety applications while leave as much as possible bandwidth for routine applications. It is expected to be capable of adapting to changing network conditions. In the first phase of the method we use a simulation based offline approach to find out the best configurations for message rate and MAC layer parameters for given numbers of vehicles. In the second phase we use the configurations identified by simulations at roadside access point (AP) for system operation. A utilization function is proposed to balance the QoS performances provided to multiple safety applications. It is demonstrated that the proposed method can largely improve the system performance when compared to fixed control method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In studies of complex heterogeneous networks, particularly of the Internet, significant attention was paid to analyzing network failures caused by hardware faults or overload, where the network reaction was modeled as rerouting of traffic away from failed or congested elements. Here we model another type of the network reaction to congestion - a sharp reduction of the input traffic rate through congested routes which occurs on much shorter time scales. We consider the onset of congestion in the Internet where local mismatch between demand and capacity results in traffic losses and show that it can be described as a phase transition characterized by strong non-Gaussian loss fluctuations at a mesoscopic time scale. The fluctuations, caused by noise in input traffic, are exacerbated by the heterogeneous nature of the network manifested in a scale-free load distribution. They result in the network strongly overreacting to the first signs of congestion by significantly reducing input traffic along the communication paths where congestion is utterly negligible. © Copyright EPLA, 2012.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Distributed network utility maximization (NUM) is receiving increasing interests for cross-layer optimization problems in multihop wireless networks. Traditional distributed NUM algorithms rely heavily on feedback information between different network elements, such as traffic sources and routers. Because of the distinct features of multihop wireless networks such as time-varying channels and dynamic network topology, the feedback information is usually inaccurate, which represents as a major obstacle for distributed NUM application to wireless networks. The questions to be answered include if distributed NUM algorithm can converge with inaccurate feedback and how to design effective distributed NUM algorithm for wireless networks. In this paper, we first use the infinitesimal perturbation analysis technique to provide an unbiased gradient estimation on the aggregate rate of traffic sources at the routers based on locally available information. On the basis of that, we propose a stochastic approximation algorithm to solve the distributed NUM problem with inaccurate feedback. We then prove that the proposed algorithm can converge to the optimum solution of distributed NUM with perfect feedback under certain conditions. The proposed algorithm is applied to the joint rate and media access control problem for wireless networks. Numerical results demonstrate the convergence of the proposed algorithm. © 2013 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been reported that high-speed communication network traffic exhibits both long-range dependence (LRD) and burstiness, which posed new challenges in network engineering. While many models have been studied in capturing the traffic LRD, they are not capable of capturing efficiently the traffic impulsiveness. It is desirable to develop a model that can capture both LRD and burstiness. In this letter, we propose a truncated a-stable LRD process model for this purpose, which can characterize both LRD and burstiness accurately. A procedure is developed further to estimate the model parameters from real traffic. Simulations demonstrate that our proposed model has a higher accuracy compared to existing models and is flexible in capturing the characteristics of high-speed network traffic. © 2012 Springer-Verlag GmbH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various flexible mechanisms related to quality of service (QoS) provisioning have been specified for uplink traffic at the medium access control (MAC) layer in the IEEE 802.16 standards. Among the mechanisms, contention based bandwidth request scheme can be used to indicate bandwidth demands to the base station for the non-real-time polling and best-effort services. These two services are used for most applications with unknown traffic characteristics. Due to the diverse QoS requirements of those applications, service differentiation (SD) is anticipated over the contention based bandwidth request scheme. In this paper we investigate the SD with the bandwidth request scheme by means of assigning different channel access parameters and bandwidth allocation priorities at different packets arrival probability. The effectiveness of the differentiation schemes is evaluated by simulations. It is observed that the initial backoff window can be efficient in SD, and if combined with the bandwidth allocation priority, the SD performances will be better.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multicast is an efficient approach to save network bandwidth for multimedia streaming services. To provide Quality of Services (QoS) for the multimedia services while maintain the advantage of multicast in bandwidth efficiency, admission control for multicast sessions are expected. Probe-based multicast admission control (PBMAC) schemes are of a sort of scalable and simple admission control for multicast. Probing scheme is the essence of PBMAC. In this paper, after a detailed survey on three existing probing schemes, we evaluate these schemes using simulation and analysis approaches in two aspects: admission correctness and group scalability. Admission correctness of the schemes is compared by simulation investigation. Analytical models for group scalability are derived, and validated by simulation results. The evaluation results illustrate the advantages and weaknesses of each scheme, which are helpful for people to choose proper probing scheme for network.