988 resultados para nested scalar convolutions
Resumo:
If the effective cosmological constant is nonzero, our observable universe may enter a stage of exponential expansion. In such a case, regions of it may tunnel back to the false vacuum of an inflaton scalar field, and inflation with a high expansion rate may resume in those regions. An ideal eternal observer would then witness an infinite succession of cycles from false vacuum to true, and back. Within each cycle, the entire history of a hot universe would be replayed. If there were several minima of the inflaton potential, our ideal observer would visit each one of these minima with a frequency which depends on the shape of the potential. We generalize the formalism of stochastic inflation to analyze the global structure of the universe when this recycling process is taken into account.
Resumo:
The singularity in the Hawking-Turok model of open inflation has some appealing properties, such as the fact that its action is integrable. Also, if one thinks of the singularity as the boundary of spacetime, then the Gibbons-Hawking term is nonvanishing and finite. Here, we consider a model where the gravitational and scalar fields are coupled to a dynamical membrane. The singular instanton can then be obtained as the limit of a family of no-boundary solutions where both the geometry and the scalar field are regular. Using this procedure, the contribution of the singularity to the Euclidean action is just 1/3 of the Gibbons-Hawking term. Unrelated to this issue, we also point out that the singularity acts as a reflecting boundary for scalar perturbations and gravity waves. Therefore, the quantization of cosmological perturbations seems to be well posed in this background.
Resumo:
We study the sensitivity limits of a broadband gravitational-wave detector based on dual resonators such as nested spheres. We determine both the thermal and back-action noises when the resonators displacements are read out with an optomechanical sensor. We analyze the contributions of all mechanical modes, using a new method to deal with the force-displacement transfer functions in the intermediate frequency domain between the two gravitational-wave sensitive modes associated with each resonator. This method gives an accurate estimate of the mechanical response, together with an evaluation of the estimate error. We show that very high sensitivities can be reached on a wide frequency band for realistic parameters in the case of a dual-sphere detector.
Resumo:
It has been argued that a black hole horizon can support the long-range fields of a Nielsen-Olesen string and that one can think of such a vortex as black hole "hair." In this paper, we examine the properties of an Abelian Higgs vortex in the presence of a charged black hole as we allow the hole to approach extremality. Using both analytical and numerical techniques, we show that the magnetic field lines (as well as the scalar field) of the vortex are completely expelled from the black hole in the extreme limit. This was to be expected, since extreme black holes in Einstein-Maxwell theory are known to exhibit such a "Meissner effect" in general. This would seem to imply that a vortex does not want to be attached to an extreme black hole. We calculate the total energy of the vortex fields in the presence of an extreme black hole. When the hole is small relative to the size of the vortex, it is energetically favored for the hole to remain inside the vortex region, contrary to the intuition that the hole should be expelled. However, as we allow the extreme horizon radius to become very large compared to the radius of the vortex, we do find evidence of an instability. This proves that it is energetically unfavorable for a thin vortex to interact with a large extreme black hole. This would seem to dispel the notion that a black hole can support "long" Abelian Higgs hair in the extreme limit. We show that these considerations do not go through in the near-extreme limit. Finally, we discuss the implications for strings that end at black holes, as in the processes where a string snaps by nucleating black holes.
Resumo:
It is well known that radiative corrections evaluated in nontrivial backgrounds lead to effective dispersion relations which are not Lorentz invariant. Since gravitational interactions increase with energy, gravity-induced radiative corrections could be relevant for the trans-Planckian problem. As a first step to explore this possibility, we compute the one-loop radiative corrections to the self-energy of a scalar particle propagating in a thermal bath of gravitons in Minkowski spacetime. We obtain terms which originate from the thermal bath and which indeed break the Lorentz invariance that possessed the propagator in the vacuum. Rather unexpectedly, however, the terms which break Lorentz invariance vanish in the high three-momentum limit. We also found that the imaginary part, which gives the rate of approach to thermal equilibrium, vanishes at one loop.
Resumo:
We explore the possibility that the dark energy is due to a potential of a scalar field and that the magnitude and the slope of this potential in our part of the Universe are largely determined by anthropic selection effects. We find that, in some models, the most probable values of the slope are very small, implying that the dark energy density stays constant to very high accuracy throughout cosmological evolution. In other models, however, the most probable values of the slope are such that the slow roll condition is only marginally satisfied, leading to a recollapse of the local universe on a time scale comparable to the lifetime of the Sun. In the latter case, the effective equation of state varies appreciably with the redshift, leading to a number of testable predictions.
Resumo:
A broad class of dark energy models, which have been proposed in attempts at solving the cosmological constant problems, predict a late time variation of the equation of state with redshift. The variation occurs as a scalar field picks up speed on its way to negative values of the potential. The negative potential energy eventually turns the expansion into contraction and the local universe undergoes a big crunch. In this paper we show that cross-correlations of the cosmic microwave background anisotropy and matter distribution, in combination with other cosmological data, can be used to forecast the imminence of such cosmic doomsday.
Resumo:
The Lorentz-Dirac equation is not an unavoidable consequence of solely linear and angular momenta conservation for a point charge. It also requires an additional assumption concerning the elementary character of the charge. We here use a less restrictive elementarity assumption for a spinless charge and derive a system of conservation equations that are not properly the equation of motion because, as it contains an extra scalar variable, the future evolution of the charge is not determined. We show that a supplementary constitutive relation can be added so that the motion is determined and free from the troubles that are customary in the Lorentz-Dirac equation, i.e., preacceleration and runaways.
Resumo:
In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.
Resumo:
A spatially flat Robertson-Walker spacetime driven by a cosmological constant is nonconformally coupled to a massless scalar field. The equations of semiclassical gravity are explicitly solved for this case, and a self-consistent de Sitter solution associated with the Bunch-Davies vacuum state is found (the effect of the quantum field is to shift slightly the effective cosmological constant). Furthermore, it is shown that the corrected de Sitter spacetime is stable under spatially isotropic perturbations of the metric and the quantum state. These results are independent of the free renormalization parameters.
Resumo:
We propose a definition of classical differential cross sections for particles with essentially nonplanar orbits, such as spinning ones. We give also a method for its computation. The calculations are carried out explicitly for electromagnetic, gravitational, and short-range scalar interactions up to the linear terms in the slow-motion approximation. The contribution of the spin-spin terms is found to be at best 10-6 times the post-Newtonian ones for the gravitational interaction.
Resumo:
We consider the coupling of quantum massless and massive scalar particles with exact gravitational plane waves. The cross section for scattering of the quantum particles by the waves is shown to coincide with the classical cross section for scattering of geodesics. The expectation value of the scalar field stress tensor between scattering states diverges at the points where classical test particles focus after colliding with the wave. This indicates that back-reaction effects cannot be ignored for plane waves propagating in the presence of quantum particles and that classical singularities are likely to develop.
Resumo:
We propose a simple geometrical prescription for coupling a test quantum scalar field to an "inflaton" (classical scalar field) in the presence of gravity. When the inflaton stems from the compactification of a Kaluza-Klein theory, the prescription leaves no arbitrariness and amounts to a dimensional reduction of the Klein-Gordon equation. We discuss the possible relevance of this coupling to "reheating" in inflationary cosmologies.
Resumo:
The in-in effective action formalism is used to derive the semiclassical correction to Einsteins equations due to a massless scalar quantum field conformally coupled to small gravitational perturbations in spatially flat cosmological models. The vacuum expectation value of the stress tensor of the quantum field is directly derived from the renormalized in-in effective action. The usual in-out effective action is also discussed and it is used to compute the probability of particle creation. As one application, the stress tensor of a scalar field around a static cosmic string is derived and the back-reaction effect on the gravitational field of the string is discussed.
Resumo:
We use wave packet mode quantization to compute the creation of massless scalar quantum particles in a colliding plane wave spacetime. The background spacetime represents the collision of two gravitational shock waves followed by trailing gravitational radiation which focus into a Killing-Cauchy horizon. The use of wave packet modes simplifies the problem of mode propagation through the different spacetime regions which was previously studied with the use of monochromatic modes. It is found that the number of particles created in a given wave packet mode has a thermal spectrum with a temperature which is inversely proportional to the focusing time of the plane waves and which depends on the mode trajectory.