913 resultados para natural killer cell mediated cytotoxicity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/aims: Clinical and laboratory studies are consistent with a major role for cell-mediated immunity in recovery from oral infection with Candida albicans, but the role of humoral immunity remains controversial. The purpose of this study was to establish the relative contributions of cellular and humoral immunity to protection against oral candidiasis in a murine model, and to determine whether host responses could be enhanced by different immunization strategies. Results: Active oral immunization was protective in BALB/c and CBA/CaH mice, reducing both fungal burden and duration of infection after secondary challenge, whereas systemic immunization failed to protect against subsequent oral challenge. Candida-specific IgM was the predominant antibody detected in serum following both primary and secondary oral challenge; however, Candida-specific salivary IgA was not detectable. Immunization by passive transfer of either lymphocytes or immune serum did not confer any significant protection against oral infection in either susceptible or resistant mouse strain. Conclusion: The data demonstrate a possible role for mucosa-associated immunity following active immunization by the oral route, most likely exerted by local T lymphocytes resident in the oral mucosa, but there was no evidence to support a role for humoral immunity in protection against oral candidiasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-mediated immunity is important for anti-Candida host defence in mucosal tissues. In this study we used cytokine-specific gene knockout mice to investigate the requirement for T helper type 1 (Th1) and Th2 cytokines in recovery from oral candidiasis. Knockout mice used in this study included interleukin-4 (IL-4), IL-10, IL-12p40, interferon-gamma (IFN-gamma), and tumour necrosis factor (TNF). The mice were challenged either orally or systemically with Candida albicans yeasts, and levels of colonization were determined. IL-12p40 knockout mice developed chronic oropharyngeal candidiasis, but were not more susceptible to systemic challenge. On the other hand, TNF knockout mice displayed increased susceptibility to both oral and systemic challenge, but only in the acute stages of infection. TNF apparently has a protective effect in the acute stages of both oral and systemic candidiasis, whereas IL-12p40 is essential for recovery from oral but not systemic candidiasis. The role of IL-12p40, and its relation to T-cell-mediated responses remain to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immune effects of fowlpox virus (FPV) field isolates and vaccine strains were evaluated in chickens infected at the age of 1 day and 6 weeks. The field isolates and the obsolete vaccine strain (FPV S) contained integrated reticuloendotheliosis virus (REV) provirus, while the current vaccine strain (FPVST) carries only REV LTR sequences. An indirect antibody ELISA was used to measure the FPV-specific antibody response. The non-specific humoral response was evaluated by injection of two T-cell-dependent antigens, sheep red blood cells (SRBC) and bovine serum albumin (BSA). There was no significant difference in the antibody response to FPV between chickens infected with FPV various isolates and strains at either age. In contrast, antibody responses to both SRBC and BSA were significantly lower in 1-day-old chickens inoculated with field isolates and FPV S at 2-3 weeks post-inoculation. Furthermore, cell-mediated immune (CMI) responses measured by in vitro lymphocyte proliferation assay and in vivo using a PHA-P skin test were significantly depressed in chickens inoculated with field isolates and FPV S at the same periods. In addition, thymus and bursal weights were lower in infected chickens. These immunosuppressive effects were not observed in chickens inoculated with the current vaccine strain, FPVST, at any time. The results of this study suggest that virulent field isolates and FPV S have immunosuppressive effects when inoculated into young chickens, which appeared in the first 3 weeks post infection. REV integrated in the FPV field isolates and FPV S may have played a central role in the development of immunosuppression. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oropharyngeal candidiasis is a common clinical problem encountered in patients with defects in innate or cell-mediated immunity. We have previously shown that recovery from chronic oropharyngeal candidiasis is dependent on CD4+ T-cell augmentation of neutrophil and macrophage candidacidal activity, and that the immune response is characterised by the production of cytokines such as IL-12 and IFN-gamma by cells in the local draining lymph nodes, and by the expression of TNF-alpha in the oral tissues. Objective: The purpose of this study was to elaborate on the role of these cytokines in recovery from oropharyngeal candidiasis, by using cytokine-specific gene-knockout mice. Methods: These mice are created by targeted gene mutation (tm1) of embryonic stem (ES) cells microinjected into host embryos. IL-4, IL-10, IL-12, IFN-gamma and TNF-alpha knockout mice, and appropriate controls, were infected orally with 108 viable C. albicans yeasts. The infection was quantified by swabbing the oral cavity and plating on Sabouraud's agar. Results: Tnftm1mice developed an acute severe infection characterized by an increased fungal load in the early stages of infection, but cleared the yeast within the same time frame as control mice (21 days). On the other hand, Il12btm1 mice developed a chronic oropharyngeal infection (120 days) similar to that seen in T-cell deficient (Foxn1nu/Foxn1nu) mutant mice. There was no significant difference between Il4tm1, Il10tm1, and Ifngtm1 mice and their respective controls. Conclusions: Tnftm1 mice may be rendered more susceptible through impaired recruitment of phagocytic cells, and/or impaired killing of C. albicans, whereas Il12btm1 mice may not be capable of activating naïve T-cells or inducing an appropriate cellular immune response. Supported by NHMRC and ADRF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biodegradable poly(dl-lactide-co-glycolide) microspheres were prepared using a modified double emulsion solvent evaporation method for the delivery of the subunit tuberculosis vaccine (Ag85B-ESAT-6), a fusion protein of the immunodominant antigens 6-kDa early secretory antigenic target (ESAT-6) and antigen 85B (Ag85B). Addition of the cationic lipid dimethyl dioctadecylammonium bromide (DDA) and the immunostimulatory trehalose 6,6'-dibehenate (TDB), either separately or in combination, was investigated for the effect on particle size and distribution, antigen entrapment efficiency, in vitro release profiles and in vivo performance. Optimised formulation parameters yielded microspheres within the desired sub-10 mu m range (1.50 +/- 0.13 mu m), whilst exhibiting a high antigen entrapment efficiency (95 +/- 1.2%) and prolonged release profiles. Although the microsphere formulations induced a cell-mediated immune response and raised specific antibodies after immunisation, this was inferior to the levels achieved with liposomes composed of the same adjuvants (DDA-TDB), demonstrating that liposomes are more effective vaccine delivery systems compared with microspheres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: Liposomes remain at the forefront of drug and vaccine design owing to their well-documented abilities to act as delivery vehicles. Nevertheless, the concept of liposomes as delivery vehicles is not a new one, with most works focusing on their use for the delivery of genes and drugs. However, in the last 10 years a significant amount of research has focused on using liposomes as vaccine adjuvants, not only as an antigen delivery vehicle but also as a tool to increase the immunogenicity of peptide and protein antigens. AREAS COVERED: This paper reviews liposomal adjuvants now in vaccine development, with particular emphasis on their adjuvant mechanism and how specific physicochemical characteristics of liposomes affect the immune response. The inclusion of immunomodulators is also discussed, with prominence given to Toll-like receptor ligands. EXPERT OPINION: The use of liposomes as vaccine delivery systems is evolving rapidly owing to the combined increase in technological advances and understanding of the immune system. Liposomes that contain and deliver immunostimulators and antigens are now being developed to target diseases that require stimulation of both humoral and cell-mediated immune responses. The CAF liposomal system, described in detail in this review, is one liposomal model that shows such flexibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of liposomes and microspheres to enhance the efficacy of a sub-unit antigen was investigated. Microspheres were optimised by testing a range of surfactants employed in the external aqueous phase of a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation process for the preparation of microspherescomposed of poly(d,l-lactide-co-glycolide) and the immunological adjuvant dimethyl dioctadecyl ammonium bromide (DDA)and then investigated with regard to the physico-chemical and immunological characteristics of the particles produced. The results demonstrate that this parameter can affect the physico-chemical characteristics of these systems and subsequently, has a substantial bearing on the level of immune response achieved, both humoural and cell mediated, when employed for the delivery of the sub-unit tuberculosis vaccine antigen Ag85B-ESAT-6. Moreover, the microsphere preparations investigated failed to initiate immune responses at the levels achieved with an adjuvant DDA-based liposome formulation (DDA-TDB), further substantiating the superior ability of liposomes as vaccine delivery systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the effect on the mechanical and physicochemical properties of type II collagen scaffolds after cross-linking with microbial transglutaminase (mTGase). It is intended to develop a collagen-based scaffold to be used for the treatment of degenerated intervertebral discs. By measuring the amount of ε-(γ-glutamyl)lysine isodipeptide formed after cross-linking, it was determined that the optimal enzyme concentration was 0.005% (w/v). From the production of covalent bonds induced by mTGase cross-linking, the degradation resistance of type II collagen scaffolds can be enhanced. Rheological analysis revealed an almost sixfold increase in storage modulus (G') with 0.005% (w/v) mTGase cross-linked scaffolds (1.31 ± 0.03 kPa) compared to controls (0.21 ± 0.01 kPa). There was a significant reduction in the level of cell-mediated contraction of scaffolds with increased mTGase concentrations. Cell proliferation assays showed that mTGase cross-linked scaffolds exhibited similar cytocompatibility properties in comparison to non-cross-linked scaffolds. In summary, cross-linking type II collagen with mTGase imparted more desirable properties, making it more applicable for use as a scaffold in tissue engineering applications. © Mary Ann Liebert, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The requirement of adjuvants in subunit protein vaccination is well known yet their mechanisms of action remain elusive. Of the numerous mechanisms suggested, cationic liposomes appear to fulfil at least three: the antigen depot effect, the delivery of antigen to antigen presenting cells (APCs) and finally the danger signal. We have investigated the role of antigen depot effect with the use of dual radiolabelling whereby adjuvant and antigen presence in tissues can be quantified. In our studies a range of cationic liposomes and different antigens were studied to determine the importance of physical properties such as liposome surface charge, antigen association and inherent lipid immunogenicity. More recently we have investigated the role of liposome size with the cationic liposome formulation DDA:TDB, composed of the cationic lipid dimethyldioctadecylammonium (DDA) and the synthetic mycobacterial glycolipid trehalose 6,6’-dibehenate (TDB). Vesicle size is a frequently investigated parameter which is known to result in different routes of endocytosis. It has been postulated that targeting different routes leads to different intracellular signaling pathway activation and it is certainly true that numerous studies have shown vesicle size to have an effect on the resulting immune responses (e.g. Th1 vs. Th2). Aim: To determine the effect of cationic liposome size on the biodistribution of adjuvant and antigen, the ensuing humoral and cell-mediated immune responses and the uptake and activation of antigen by APCs including macrophages and dendritic cells. Methods: DDA:TDB liposomes were made to three different sizes (~ 0.2, 0.5 and 2 µm) followed by the addition of tuberculosis antigen Ag85B-ESAT-6 therefore resulting in surface adsorption. Liposome formulations were injected into Balb/c or C57Bl/6 mice via the intramuscular route. The biodistribution of the liposome formulations was followed using dual radiolabelling. Tissues including muscle from the site of injection and local draining lymph nodes were removed and liposome and antigen presence quantified. Mice were also immunized with the different vaccine formulations and cytokine production (from Ag85B-ESAT-6 restimulated splenocytes) and antibody presence in blood assayed. Furthermore, splenocyte proliferation after restimulating with Ag85B-ESAT-6 was measured. Finally, APCs were compared for their ability to endocytose vaccine formulations and the effect this had on the maturation status of the cell populations was compared. Flow cytometry and fluorescence labelling was used to investigate maturation marker up-regulation and efficacy of phagocytosis. Results: Our results show that for an efficient Ag85B-ESAT-6 antigen depot at the injection site, liposomes composed of DDA and TDB are required. There is no significant change in the presence of liposome or antigen at 6hrs or 24hrs p.i, nor does liposome size have an effect. Approximately 0.05% of the injected liposome dose is detected in the local draining lymph node 24hrs p.i however protein presence is low (<0.005% dose). Preliminary in vitro data shows liposome and antigen endocytosis by macrophages; further studies on this will be presented in addition to the results of the immunisation study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research focused on the formation of particulate delivery systems for the sub-unit fusion protein, Ag85B-ESAT-6, a promising tuberculosis (TB) vaccine candidate. Initial work concentrated on formulating and characterising, both physico-chemically and immunologically, cationic liposomes based on the potent adjuvant dimethyl dioctadecyl ammonium (DDA). These studies demonstrated that addition of the immunomodulatory trehalose dibehenate (TDB) enhanced the physical stability of the system whilst also adding further adjuvanticity. Indeed, this formulation was effective in stimulating both a cell mediated and humoural immune response. In order to investigate an alternative to the DDA-TDB system, microspheres based on poly(DL-lactide-co-glycolide) (PLGA) incorporating the adjuvants DDA and TDB, either alone or in combination, were first optimised in terms of physico-chemical characteristics, followed by immunological analysis. The formulation incorporating PLGA and DDA emerged as the lead candidate, with promising protection data against TB. Subsequent optimisation of the lead microsphere formulation investigated the effect of several variables involved in the formulation process on physico-chemical and immunological characteristics of the particles produced. Further, freeze-drying studies were carried out with both sugar-based and amino acid-based cryoprotectants, in order to formulate a stable freexe-dried product. Finally, environmental scanning electron microscopy (ESEM) was investigated as a potential alternative to conventional SEM for the morphological investigation of microsphere formulations. Results revealed that the DDA-TDB liposome system proved to be the most immunologically efficient delivery vehicle studied, with high levels of antibody and cytokine production, particularly gamma-interferon (IFN-ϒ), considered the key cytokine marker for anti-mycobacterial immunity. Of the microsphere systems investigated, PLGA in combination with DDA showed the most promise, with an ability to initiate a broad spectrum of cytokine production, as well as antigen specific spleen cell proliferation comparable to that of the DDA-TDB formulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of immunological adjuvants has been established since 1924 and ever since many candidates have been extensively researched in vaccine development. The controlled release of vaccine is another area of biotechnology research, which is advancing rapidly with great potential and success. Encapsulation of peptide and protein drugs within biodegradable microspheres has been amongst the most successful of approaches within the past decade. The present studies have focused on combining the advantages of microsphere delivery systems composed of biodegradable polylactide (PLLA) and polylactide-co-glycolide (PLGA) polymers with that of safe and effective adjuvants. The research efforts were directed to the development of single-dose delivery vehicles which, can be manufactured easily, safely, under mild and favourable conditions to the encapsulated antigens. In pursuing this objective non ionic block copolymers (NIBCs) (Pluronics@ LI01 and L121) were incorporated within poly-dl-lactide (PDLA) micorospheres prepared with emulsification-diffusion method. LI0I and L121 served both as adjuvants and stabilising agents within these vaccine delivery vehicles. These formulations encapsulating the model antigens lysozyme, ovalbumin (OVA) and diphtheria toxoid (DT) resulted in high entrapment efficiency (99%), yield (96.7%) and elicited high and sustained immune response (IgG titres up to 9427) after one single administration over nine months. The structural integrity of the antigens was preserved within these formulations. In evaluating new approaches for the use of well-established adjuvants such as alum, these particles were incorporated within PLLA and PLGA microspheres at much lesser quantities (5-10 times lower) than those contained within conventional alum-adsorbed vaccines. These studies focused on the incorporation of the clinically relevant tetanus toxoid (TT) antigen within biodegradable microspheres. The encapsulation of both alum particles and TT antigen within these micropheres resulted in preparations with high encapsulation efficiency (95%) and yield (91.2%). The immune response to these particles was also investigated to evaluate the secretion of serum IgG, IgG1, IgG2a and IgG2b after a single administration of these vaccines. The Splenic cells proliferation was also investigated as an indication for the induction of cell mediated immunity. These particles resulted in high and sustained immune response over a period of 14 months. The stability of TT within particles was also investigated under dry storage over a period of several months. NIBC microspheres were also investigated as potential DNA vaccine delivery systems using hepatitis B plasmid. These particles resulted in micro spheres of 3-5 μm diameter and were shown to preserve the integrity of the encapsulated (27.7% entrapment efficiency) hepatitis B plasmid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced immune responses for DNA and subunit vaccines potentiated by surfactant vesicle based delivery systems outlined in the present study, provides proof of principle for the beneficial aspects of vesicle mediated vaccination. The dehydration-rehydration technique was used to entrap plasmid DNA or subunit antigens into lipid-based (liposomes) or non-ionic surfactant-based (niosomes) dehydration-rehydration vesicles (DRV). Using this procedure, it was shown that both these types of antigens can be effectively entrapped in DRV liposomes and DRV niosomes. The vesicle size of DRV niosomes was shown to be twice the diameter (~2µm) of that of their liposome counterparts. Incorporation of cryoprotectants such as sucrose in the DRV procedure resulted in reduced vesicle sizes while retaining high DNA incorporation efficiency (~95%). Transfection studies in COS 7 cells demonstrated that the choice of cationic lipid, the helper lipid, and the method of preparation, all influenced transfection efficiency indicating a strong interdependency of these factors. This phenomenon has been further reinforced when 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE): cholesteryl 3b- [N-(N’ ,N’ -dimethylaminoethane)-carbamoyl] cholesterol (DC-Chol)/DNA complexes were supplemented with non-ionic surfactants. Morphological analysis of these complexes using transmission electron microscopy and environmental scanning electron microscopy (ESEM) revealed the presence of heterogeneous structures which may be essential for an efficient transfection in addition to the fusogenic properties of DOPE. In vivo evaluation of these DNA incorporated vesicle systems in BALB/c mice showed weak antibody and cell-mediated immune (CMI) responses. Subsequent mock challenge with hepatitis B antigen demonstrated that, 1-monopalmitoyl glycerol (MP) based DRV, is a more promising DNA vaccine adjuvant. Studying these DRV systems as adjuvants for the Hepatitis B subunit antigen (HBsAg) revealed a balanced antibody/CMI response profile on the basis of the HBsAg specific antibody and cytokine responses which were higher than unadjuvated antigen. The effect of addition of MP, cholesterol and trehalose 6,6’-dibehenate (TDB) on the stability and immuno-efficacy of dimethyldioctadecylammonium bromide (DDA) vesicles was investigated. Differential scanning calorimetry showed a reduction in transition temperature of DDA vesicles by ~12°C when incorporated with surfactants. ESEM of MP based DRV system indicated an increased vesicle stability upon incorporation of antigen. Adjuvant activity of these systems tested in C57BL/6j mice against three subunit antigens i.e., mycobacterial fusion protein- Ag85B-ESAT-6, and two malarial antigens - merozoite surface protein-1, (MSP1), and glutamate rich protein, (GLURP) revealed that while MP and DDA based systems induced comparable antibody responses, DDA based systems induced powerful CMI responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liposomes remain at the forefront of vaccine design due to their well documented abilities to act as delivery vehicles and adjuvants. Liposomes have been described to initiate an antigen depot-effect, thereby increasing antigen exposure to circulating antigen-presenting cells. More recently, in-depth reviews have focussed on inherent immunostimulatory abilities of various cationic lipids, the use of which is consequently of interest in the development of subunit protein vaccines which when delivered without an adjuvant are poorly immunogenic. The importance of liposomes for the mediation of an antigen depot-effect was examined by use of a dual-radiolabelling technique thereby allowing simultaneous detection of liposomal and antigenic components and analysis of their pharmacokinetic profile. In addition to investigating the biodistribution of these formulations, their physicochemical properties were analysed and the ability of the various liposome formulations to elicit humoral and cell-mediated immune responses was investigated. Our results show a requirement of cationic charge and medium/strong levels of antigen adsorption to the cationic liposome in order for both a liposome and antigen depot-effect to occur at the injection site. The choice of injection route had little effect on the pharmacokinetics or immunogenicity observed. In vitro, cationic liposomes were more cytotoxic than neutral liposomes due to significantly enhanced levels of cell uptake. With regards to the role of bilayer fluidity, liposomes expressing more rigid bilayers displayed increased retention at the injection site although this did not necessarily result in increased antigen retention. Furthermore, liposome bilayer rigidity did not necessarily correlate with improved immunogenicity. In similar findings, liposome size did not appear to control liposome or antigen retention at the injection site. However, a strong liposome size correlation between splenocyte proliferation and production of IL-10 was noted; specifically immunisation with large liposomes lead to increased levels of splenocyte proliferation coupled with decreased IL-10 production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Liposomes offer an ideal platform for the delivery of subunit vaccines, due to their versatility and flexibility, which allows for antigen as well as immunostimulatory lipids and TLR agonists to become associated with these bilayered vesicles. Liposomes have the ability to protect vaccine antigen, as well as enhance delivery to antigen presenting cells, whilst the importance of cationic surface charge for delivery of TB subunit vaccines and formation of an ‘antigen depot’ may play a key role in boosting cell-mediated immunity and Th1 immune responses. The rational design of vaccine adjuvants requires the thorough investigation into the physicochemical characteristics that dictate the function of a liposomal adjuvant. Within this thesis, physicochemical characteristics were investigated in order to show any effects on the biodistribution profiles and the ensuing immune responses of these formulations. Initially the role of liposome charge within the formulation was investigated and subsequently their efficacy as vaccine adjuvants in combination with their biodistribution was measured to allow the role of formulation in vaccine function to be considered. These results showed that cationic surface charge, in combination with high loading of H56 vaccine antigen through electrostatic binding, was crucial in the promotion of the ‘depot-effect’ at the injection site which increases the initiation of Th1 cell-mediated immune responses that are required to offer protection against tuberculosis. To further investigate this, different methods of liposome production were also investigated where antigen incorporation within the vesicles as well as surface adsorption were adopted. Using the dehydration-rehydration (DRV) method (where liposomes are freeze-dried in the presence of antigen to promote antigen encapsulation) and the double emulsion (DE) method, a range of liposomes entrapping antigen were formulated. Variation in the liposome preparation method can lead to antigen entrapment within the delivery system which has been shown to be greater for DRV-formulated liposomes compared to their DE-counterparts. This resulted in no significant effect on the vaccine biodistribution profile, as well as not significantly altering the efficacy of cationic liposomal adjuvants. To further enhance the efficacy of these systems, the addition of TLR agonists either at the vesicle surface as well as within the delivery system has been displayed through variation in the preparation method. Anionic liposomal adjuvants have been formulated, which displayed rapid drainage from the injection site to the draining lymph nodes and displayed a reduction in measured Th1 immune responses. However, variation in the preparation method can alter the immune response profile for anionic liposomal adjuvants with a bias in immune response to Th2 responses being noted. Through the use of high shear mixing and stepwise incorporation, the efficient loading of TLR agonist within liposomes has been shown. However, interestingly the conjugation between lipid and non-electrostatically bound TLR agonist, followed by insertion into the bilayer of DDA/TDB resulted in localised agonist retention at the injection site and further stimulation of the Th1 immune response at the SOI, spleen and draining lymphatics as well as enhanced antibody titres.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have evaluated the cytotoxicity of a series of novel anti-tubercular 2-pyridyl carboxamidrazones through incubation with human mononuclear leucocytes (MNL), with and without a rat microsomal metabolising system. Isoniazid (INH), the closest structurally related agent, was used as a positive control. Incubation of the 3-benzyloxy-benzylidene, dimethylpropyl-benzylidene and 4-phenyl-benzylidene with MNL showed no significant toxicity in comparison with either INH or DMSO vehicle control. However, the 4-N,N-dimethylamino-1-naphthylidene derivative exerted more than sevenfold greater toxicity compared with INH, while the 4-N,N-dimethylamino-1-naphthylidene, 2-benzyloxy-3-methoxy-benzylidene, 2-t-butylthio-benzylidene and 4-i-propyl-benzylidene derivatives showed toxicity which ranged from five to fourfold that of INH. In the presence of either rat microsomes with or without NADPH, the 3-benzyloxy-benzylidene, dimethylpropyl-benzylidene and 4-phenyl-benzylidene derivatives showed no metabolically-mediated cytotoxicity. The latter two derivatives showed a combination of low toxicity and considerable efficacy against Mycobacteria tuberculosis in vitro and show promise for future development. © 2001 Elsevier Science B.V.