1000 resultados para natural gashydrate
Resumo:
Natural gas hydrate (NGH) reservoirs have been considered as a substantial future clean energy resource and how to recover gas from these reservoirs feasibly and economically is very important. Microwave heating will be taken as a promising method for gas production from gas hydrates for its advantages of fast heat transfer and flexible application. In this work, we investigate the formation/decomposition behavior of natural gas hydrate with different power of microwave (2450MHZ), preliminarily analyze the impact of microwave on phase equilibrium of gas hydrate,and make calculation based on van der Waals-Platteeuw model. It is found that microwave of a certain amount of power can reduce the induction time and sub-cooling degree of NGH formation, e.g., 20W microwave power can lead to a decrease of about 3A degrees C in sub-cooling degree and the shortening of induction time from 4.5 hours to 1.3 hours. Microwave can make rapid NGH decomposition, and water from NGH decomposition accelerates the decomposition of NGH with the decomposition of NGH. Under the same pressure, microwave can increase NGH phase equilibrium temperature. Different dielectric properties of each composition of NGH may cause a distinct difference in temperature in the process of NGH decomposition. Therefore, NGH decomposition by microwave can be affected by many factors.
Resumo:
Natural surface coatings sampled (NSCSs) from the surface of shingles and surficial sediments (SSs) in the Songhua River, China were employed to investigate the similarities and difference in fractions of heavy metals (Fe, Mn, Zn, Cu, Pb, and Cd) between NSCSs and SSs using the modified sequential extraction procedure (MSEP). The results show that the differences between NSCSs and SSs in Fe fractions were insignificant and Fe was dominantly present as residual phase (76.22% for NSCSs and 80.88% for SSs) and Fe-oxides phase (20.33% for NSCSs and 16.15% for SSs). Significant variation of Mn distribution patterns between NSCSs and SSs was observed with Mn in NSCSs mainly present in Mn-oxides phase (48.27%) and that in SSs present as residual phase (45.44%). Zn, Cu, Pb and Cd were found dominantly in residual fractions (>48%), and next in solid oxides/hydroxides for Zn, Pb and Cd and in easily oxidizable solids/compounds form for Cu, respectively. The heavy metal distribution pattern implied that Fe/Mn oxides both in NSCSs and SSs were more important sinks for binding and adsorption of Zn, Pb and Cd than organic matter (OM), and inversely, higher affinity of Cu to OM than Fe/Mn oxides in NSCSs and SSs was obtained. Meanwhile, it was found that the distributions of heavy metals in NSCSs and SSs were similar to each other and the pseudo-total concentrations of Zn, Cu, Pb and Cd in NSCSs were greater than those in SSs, highlighting the more importance for NSCSs than SSs in controlling behaviours of heavy metals in aquatic environments.