970 resultados para nanofiber membranes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expanded polytetrafluoroethylene (ePTFE) membranes were modified by graft copolymerization with methacryloxyethyl phosphate (MOEP) in methanol and 2-butanone (methyl ethyl ketone (MEK)) at ambient temperature using gamma irradiation. The effect of dose rate (0.46 and 4.6 kGyh(-1)), monomer concentration (1-40 %) and solvent were studied and the modified membranes were characterized by weight increase, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). XPS was used to determine the % degree of surface coverage using the C-F (ePTFE membrane) and the C-C (MOEP graft copolymer) peaks. Grafting yield, as well as surface coverage, were found to increase with increasing monomer concentration and were significantly higher for samples grafted in MEK than in methanol solution. SEM images showed distinctly different surface morphologies for the membranes grafted in methanol (smooth) and MEK (globular), hence indicating phase separation of the homopolymer in MEK. We propose that in our system, the non-solvent properties of MEK for the homopolymer play a more important role than solvent chain transfer reactions in determining grafting outcomes. (c) 2005 Society of Chemical Industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients-therefore sampling rates-using the dimensionless Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data. The study demonstrates that for trace concentrations (sub 0.1 mu g/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microencapsulation of cell spheroids in an immunoselective, highly biocompatible, biomembrane offers a way to create viable implantation options in the treatment of insulin-dependent diabetes mellitus (IDDM). Traditionally the encapsulation process has been achieved through the injection/extrusion of alginate/cell mixtures into a calcium chloride solution to produce calcium alginate capsules around the cells. A novel alternative is explored here through a procedure using an emulsion process to produce thin adherent calcium alginate membranes around cell spheroids. In this study, a thorough investigation has been used to establish the emulsion process parameters that are critical to the formation of a coherent alginate coat both on a model spheroid system and subsequently on cell spheroids. Optical and fluorescence microscopy are used to assess the morphology and coherence of the calcium alginate/ poly-L-ornithine/alginate (APA) capsules produced. (c) 2005 Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lipoamino acids (LAAs) are promoieties able to enhance the amphiphilicity of drugs, facilitating their interaction with cell membranes. Experimental and computational studies were carried out on two series of lipophilic amide conjugates between a model drug (tranylcypromine, TCP) and LAA or alkanoic acids containing a short, medium or long alkyl side chain (C-4 to C-16). The effects of these compounds were evaluated by monolayer surface tension analysis and differential scanning calorimetry using dimyristoylphosphatidylcholine nnonolayers and liposomes as biomembrane models. The experimental results were related to independent calculations to determine partition coefficient and blood-brain partitioning. The comparison of TCP-LAA conjugates with the related series of TCP alkanoyl amides confirmed that the ability to interact with the biomembrane models is not due to the mere increase of lipophilicity, but mainly to the amphipatic nature and the kind of LAA residue. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS213-34A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Setf-supported asymmetric hollow-fiber membranes of mixed oxygen-ionic and electronic conducting perovskite Ba0.5Sr0.5Co0.8Fe0.2O3-delta (BSCF) were prepared by a combined phase-inversion and sintering technique. The starting inorganic powder was synthesized by combined EDTA-citrate complexing process followed by thermal treatment at 600 degrees C. The powder was dispersed in a polymer solution and then extruded into hollow-fiber precursors through a spinneret. ne fiber precursors were sintered at elevated temperatures to form gastight membranes, which were characterized by SEM and gas permeation tests. Performance of the hollow fibers in air separation was both experimentally and theoretically studied at various conditions. The results reveal that the oxygen permeation process was controlled by the slow oxygen surface exchange kinetics under the investigated conditions. The porous inner surface of the prepared perovskite hollow-fiber membranes considerably favored the oxygen permeation. The maximum oxygen flux measured was 0.031 mol-m(-2).s(-1) at 950 degrees C with the sweep gas flow rate of 0.522 mol(.)m(-2).s(-1). To improve the oxygen flux of BSCF perovskite membranes, future work should be focused on surface modification rather than reduction of the membrane thickness. (c) 2006 American Institute of Chemical Engineers.