998 resultados para mutation inhibition
Resumo:
In previous studies, we have demonstrated the inhibition of CD4 expression in rat lymphocytes treated with phorbol myristate acetate (PMA) by antisense oligonucleotides (AS-ODNs) directed against the AUG start region of the cd4 gene. The aim of the present study was to inhibit CD4 expression in lymphocytes without promoting CD4 synthesis and to determine the effect of this inhibition on CD4+ T cell function. Four 21-mer ODNs against the rat cd4 gene (AS-CD4-1 to AS-CD4-4) were used. Surface CD4 expression was measured by immunofluorescence staining and flow cytometry, and mRNA CD4 expression was measured by RT-PCR. T CD4+ cell function was determined by specific and unspecific proliferative response of rat-primed lymphocytes. After 24 hours of incubation, AS-CD4-2 and AS-CD4-4 reduced lymphocyte surface CD4 expression by 40%. This effect remained for 72 hours and was not observed on other surface molecules, such as CD3, CD5, or CD8. CD4 mRNA expression was reduced up to 40% at 24 hours with AS-CD4-2 and AS-CD4-4. After 48 hours treatment, CD4 mRNA decreased up to 27% and 29% for AS-CD4-2 and AS-CD4-4, respectively. AS-CD4-2 and AS-CD4-4 inhibited T CD4+ cell proliferative response upon antigen-specific and unspecific stimuli. Therefore, AS-ODNs against CD4 molecules inhibited surface and mRNA CD4 expression, under physiologic turnover and, consequently, modulate T CD4+ cell reactivity.
Resumo:
Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle's disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial.
Resumo:
In previous studies, we have demonstrated the inhibition of CD4 expression in rat lymphocytes treated with phorbol myristate acetate (PMA) by antisense oligonucleotides (AS-ODNs) directed against the AUG start region of the cd4 gene. The aim of the present study was to inhibit CD4 expression in lymphocytes without promoting CD4 synthesis and to determine the effect of this inhibition on CD4+ T cell function. Four 21-mer ODNs against the rat cd4 gene (AS-CD4-1 to AS-CD4-4) were used. Surface CD4 expression was measured by immunofluorescence staining and flow cytometry, and mRNA CD4 expression was measured by RT-PCR. T CD4+ cell function was determined by specific and unspecific proliferative response of rat-primed lymphocytes. After 24 hours of incubation, AS-CD4-2 and AS-CD4-4 reduced lymphocyte surface CD4 expression by 40%. This effect remained for 72 hours and was not observed on other surface molecules, such as CD3, CD5, or CD8. CD4 mRNA expression was reduced up to 40% at 24 hours with AS-CD4-2 and AS-CD4-4. After 48 hours treatment, CD4 mRNA decreased up to 27% and 29% for AS-CD4-2 and AS-CD4-4, respectively. AS-CD4-2 and AS-CD4-4 inhibited T CD4+ cell proliferative response upon antigen-specific and unspecific stimuli. Therefore, AS-ODNs against CD4 molecules inhibited surface and mRNA CD4 expression, under physiologic turnover and, consequently, modulate T CD4+ cell reactivity.
Resumo:
Neuronal circuit asymmetries are important components of brain circuits, but the molecular pathways leading to their establishment remain unknown. Here we found that the mutation of FRMD7, a gene that is defective in human congenital nystagmus, leads to the selective loss of the horizontal optokinetic reflex in mice, as it does in humans. This is accompanied by the selective loss of horizontal direction selectivity in retinal ganglion cells and the transition from asymmetric to symmetric inhibitory input to horizontal direction-selective ganglion cells. In wild-type retinas, we found FRMD7 specifically expressed in starburst amacrine cells, the interneuron type that provides asymmetric inhibition to direction-selective retinal ganglion cells. This work identifies FRMD7 as a key regulator in establishing a neuronal circuit asymmetry, and it suggests the involvement of a specific inhibitory neuron type in the pathophysiology of a neurological disease. VIDEO ABSTRACT.
Resumo:
Background: Treatment of NSCLC has been revolutionized in recent years with the introduction of several targeted therapies for selected genetically altered subtypes of NSCLC. A better understanding of molecular characteristics of NSCLC, which features common drug targets, may identify new therapeutic options. Methods: Over 6,700 non-small cell lung cancer cases referred to Caris Life Sciences between 2009 and 2014. Diagnoses and history were collected from referring physicians. Specific testing was performed per physician request and included a combination of sequencing (Sanger, NGS or pyrosequencing), protein expression (IHC), gene amplification/rearrangement (CISH or FISH), and/or RNA fragment analysis. Results: Tumors profiles from patients with hormone receptor positive disease (HER2, ER, PR, or AR positive by IHC) (n=629), HER2 mutations (n=8) ALK rearrangements (n=55), ROS1 rearrangement (n=17), cMET amplification or mutation (n=126), and cKIT mutation (n=11) were included in this analysis and compared to the whole cohort. Tumors with ALK rearrangement overexpressed AR in 18% of cases, and 7% presented with concomitant KRAS mutation. Lower rates of PTEN loss, as assessed by IHC, were observed in ALK positive (20%), ROS1 positive (9%) and cKIT mutated tumors (25%) compared to the overall NSCLC population (58%). cMET was overexpressed in 66% of ROS1 translocated and 57% of HER2 mutated tumors. cKIT mutations were found co-existing with APC (20%) and EGFR (20%) mutations. Pathway analysis revealed that hormone receptor positive disease carried more mutations in the ERK pathway (32%) compared to 9% in the mTOR pathway. 25% of patients with HER2 mutations harbored a co-existing mutation in the mTOR pathway. Conclusions: Pathway profiling reveals that NSCLC tumors present more often than reported with several concomitant alterations affecting the ERK or AKT pathway. Additionally, they are also characterized by the expression of potential biological modifiers of the cell cycle like hormonal receptors, representing a rationale for dual inhibition strategies in selected patients. Further refining of the understanding of NSCLC biomarker profile will optimize research for new treatment strategies.
Resumo:
Purpose: To report the clinical and genetic study of a child with bilateral anophthalmia. Methods: A 14-year-old Egyptian boy, born from consanguineous parents, underwent a general and a full ophthalmological examination. Mutation screen of the A/M genes with recessive inheritance was done stepwise and DNA was analyzed by Sanger sequencing. Results: Bilateral anophthalmia, arachnodactyly of the feet and high arched palate were observed on general examination. The parents were first cousins and healthy. Sequencing analysis revealed a novel compound heterozygous mutation in one of the copy of exon 2 of VSX2 and a possible deletion of at least exon 2 on the other allele. Conclusions: A compound heterozygous VSX2 mutation associated with anophthalmia was identified in a patient from an Egyptian consanguineous family. This report brings the number of VSX2 mutation in anophthalmia/microphthalmia (A/M) to 13. Functional consequences of the reported changes still need to be characterized, as well as the percentage of A/M caused by mutations in the VSX2 gene. This family also shows that despite consanguinity, heterozygous mutations can also happen and one should not restrict the molecular analysis to homozygous mutations.
Resumo:
The paracaspase MALT1 has a central role in the activation of lymphocytes and other immune cells including myeloid cells, mast cells and NK cells. MALT1 activity is required not only for the immune response, but also for the development of natural Treg cells that keep the immune response in check. Exaggerated MALT1 activity has been associated with the development of lymphoid malignancies, and recently developed MALT1 inhibitors show promising anti-tumor effects in xenograft models of diffuse large B cell lymphoma. In this review, we provide an overview of the present understanding of MALT1's function, and discuss possibilities for its therapeutic targeting based on recently developed inhibitors and animal models.
Resumo:
PURPOSE: The MOSAIC (Multicenter International Study of Oxaliplatin/Fluorouracil/Leucovorin in the Adjuvant Treatment of Colon Cancer) study has demonstrated 3-year disease-free survival (DFS) and 6-year overall survival (OS) benefit of adjuvant oxaliplatin in stage II to III resected colon cancer. This update presents 10-year OS and OS and DFS by mismatch repair (MMR) status and BRAF mutation. METHODS: Survival actualization after 10-year follow-up was performed in 2,246 patients with resected stage II to III colon cancer. We assessed MMR status and BRAF mutation in 1,008 formalin-fixed paraffin-embedded specimens. RESULTS: After a median follow-up of 9.5 years, 10-year OS rates in the bolus/infusional fluorouracil plus leucovorin (LV5FU2) and LV5FU2 plus oxaliplatin (FOLFOX4) arms were 67.1% versus 71.7% (hazard ratio [HR], 0.85; P = .043) in the whole population, 79.5% versus 78.4% for stage II (HR, 1.00; P = .980), and 59.0% versus 67.1% for stage III (HR, 0.80; P = .016) disease. Ninety-five patients (9.4%) had MMR-deficient (dMMR) tumors, and 94 (10.4%) had BRAF mutation. BRAF mutation was not prognostic for OS (P = .965), but dMMR was an independent prognostic factor (HR, 2.02; 95% CI, 1.15 to 3.55; P = .014). HRs for DFS and OS benefit in the FOLFOX4 arm were 0.48 (95% CI, 0.20 to 1.12) and 0.41 (95% CI, 0.16 to 1.07), respectively, in patients with stage II to III dMMR and 0.50 (95% CI, 0.25 to 1.00) and 0.66 (95% CI, 0.31 to 1.42), respectively, in those with BRAF mutation. CONCLUSION: The OS benefit of oxaliplatin-based adjuvant chemotherapy, increasing over time and with the disease severity, was confirmed at 10 years in patients with stage II to III colon cancer. These updated results support the use of FOLFOX in patients with stage III disease, including those with dMMR or BRAF mutation.
Resumo:
The transcriptional corepressor SMRT controls neuronal responsiveness of several transcription factors and can regulate neuroprotective and neurogenic pathways. SMRT is a multi-domain protein that complexes with HDAC3 as well as being capable of interactions with HDACs 1, 4, 5 and 7. We previously showed that in rat cortical neurons, nuclear localisation of SMRT requires histone deacetylase activity: Inhibition of class I/II HDACs by treatment with trichostatin A (TSA) causes redistribution of SMRT to the cytoplasm, and potentiates the activation of SMRT-repressed nuclear receptors. Here we have sought to identify the HDAC(s) and region(s) of SMRT responsible for anchoring it in the nucleus under normal circumstances and for mediating nuclear export following HDAC inhibition. We show that in rat cortical neurons SMRT export can be triggered by treatment with the class I-preferring HDAC inhibitor valproate and the HDAC2/3-selective inhibitor apicidin, and by HDAC3 knockdown, implicating HDAC3 activity as being required to maintain SMRT in the nucleus. HDAC3 interaction with SMRT's deacetylation activation domain (DAD) is known to be important for activation of HDAC3 deacetylase function. Consistent with a role for HDAC3 activity in promoting SMRT nuclear localization, we found that inactivation of SMRT's DAD by deletion or point mutation triggered partial redistribution of SMRT to the cytoplasm. We also investigated whether other regions of SMRT were involved in mediating nuclear export following HDAC inhibition. TSA- and valproate-induced SMRT export was strongly impaired by deletion of its repression domain-4 (RD4). Furthermore, over-expression of a region of SMRT containing the RD4 region suppressed TSA-induced export of full-length SMRT. Collectively these data support a model whereby SMRT's RD4 region can recruit factors capable of mediating nuclear export of SMRT, but whose function and/or recruitment is suppressed by HDAC3 activity. Furthermore, they underline the fact that HDAC inhibitors can cause reorganization and redistribution of corepressor complexes.