884 resultados para multi-walled carbon nanotube


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The impact of nano-scaled materials on photosynthetic organisms needs to be evaluated. Plants represent the largest interface between the environment and biosphere, so understanding how nanoparticles affect them is especially relevant for environmental assessments. Nanotoxicology studies in plants allude to quantum size effects and other properties specific of the nano-stage to explain increased toxicity respect to bulk compounds. However, gene expression profiles after exposure to nanoparticles and other sources of environmental stress have not been compared and the impact on plant defence has not been analysed. Results: Arabidopsis plants were exposed to TiO2-nanoparticles, Ag-nanoparticles, and multi-walled carbon nanotubes as well as different sources of biotic (microbial pathogens) or abiotic (saline, drought, or wounding) stresses. Changes in gene expression profiles and plant phenotypic responses were evaluated. Transcriptome analysis shows similarity of expression patterns for all plants exposed to nanoparticles and a low impact on gene expression compared to other stress inducers. Nanoparticle exposure repressed transcriptional responses to microbial pathogens, resulting in increased bacterial colonization during an experimental infection. Inhibition of root hair development and transcriptional patterns characteristic of phosphate starvation response were also observed. The exogenous addition of salicylic acid prevented some nano-specific transcriptional and phenotypic effects, including the reduction in root hair formation and the colonization of distal leaves by bacteria. Conclusions: This study integrates the effect of nanoparticles on gene expression with plant responses to major sources of environmental stress and paves the way to remediate the impact of these potentially damaging compounds through hormonal priming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the use of near-field electrospinning (NFES) as a route to fabricate composite electrodes. Electrodes made of composite fibers of multi-walled carbon nanotubes in polyethylene oxide (PEO) are formed via liquid deposition, with precise control over their configuration. The electromechanical properties of free-standing fibers and fibers deposited on elastic substrates are studied in detail. In particular, we examine the elastic deformation limit of the resulting free-standing fibers and find, similarly to bulk PEO composites, that the plastic deformation onset is below 2% of tensile strain. In comparison, the apparent deformation limit is much improved when the fibers are integrated onto a stretchable, elastic substrate. It is hoped that the NFES fabrication protocol presented here can provide a platform to direct-write polymeric electrodes, and to integrate both stiff and soft electrodes onto a variety of polymeric substrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hybrid material based on Pt nanoparticles (Pt NPs) and multi-walled carbon nanotubes (MWNTs) was fabricated with the assistance of PEI and formic acid. The cationic polyelectrolyte PEI not only favored the homogenous dispersion of carbon nanotubes (CNTs) in water, but also provided sites for the adsorption of anionic ions PtCl42- on the MWNTs' sidewalls. Deposition of Pt NPs on the MWNTs' sidewalls was realized by in situ chemical reduction of anionic ions PtCl42- with formic acid. The hybrid material was characterized with TEM, XRD and XPS. Its excellent electrocatalytic activity towards both oxygen reduction in acid media and dopamine redox was also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two mechanisms of conduction were identified from temperature dependent (120 K-340 K) DC electrical resistivity measurements of composites of poly(c-caprolactone) (PCL) and multi-walled carbon nanotubes (MWCNTs). Activation of variable range hopping (VRH) occurred at lower temperatures than that for temperature fluctuation induced tunneling (TFIT). Experimental data was in good agreement with the VRH model in contrast to the TFIT model, where broadening of tunnel junctions and increasing electrical resistivity at T > T-g is a consequence of a large difference in the coefficients of thermal expansion of PCL and MWCNTs. A numerical model was developed to explain this behavior accounting for a thermal expansion effect by supposing the large increase in electrical resistivity corresponds to the larger relative deformation due to thermal expansion associated with disintegration of the conductive MWCNT network. MWCNTs had a significant nucleating effect on PCL resulting in increased PCL crystallinity and an electrically insulating layer between MWCNTs. The onset of rheological percolation at similar to 0.18 vol% MWCNTs was clearly evident as storage modulus, G' and complex viscosity, vertical bar eta*vertical bar increased by several orders of magnitude. From Cole-Cole and Van Gurp-Palmen plots, and extraction of crossover points (G(c)) from overlaying plots of G' and G '' as a function of frequency, the onset of rheological percolation at 0.18 vol% MWCNTs was confirmed, a similar MWCNT loading to that determined for electrical percolation. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One-dimensional monatomic chains are promising candidates for technical applications in the field of nanoelectronics due to their unique mechanical, electrical and optical properties. In particular, we investigate the mechanical properties including Young's modulus, ultimate strength and ultimate strain, which are necessities for the stability of the materials by the Car-Parrinello molecular dynamics in this work. The comparative studies for the alternating carbon-nitrogen (C3N2) chain and carbon chains (carbyne) of different lengths show that the carbon-nitrogen (C-N) chain is obviously stronger and stiffer than carbynes. Thus the C-N chain, which has been found in decomposition products of the nitromethane explosive simulations, could be a superior nano-mechanical material than the carbyne chain. Furthermore, it is found that the bond order of weakest bond in monatomic chains is positively correlated with Young's modulus and ultimate strength of materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Os nanomateriais são estruturas com uma ou mais dimensões inferiores a 100 nanómetros. Devido à sua pequena dimensão, as nanopartículas apresentam atributos únicos, tais como a sua elevada área superficial relativamente à sua massa, reactividade ou força tênsil. Estas características influenciam grandemente algumas das propriedades dos nanomateriais, como a sua hidrofobicidade, carga ou toxicidade. As propriedades das nanopartículas tornam-nas também muito úteis para o Homem, sendo aplicadas em medicina, farmácia, electrónica, cosmética, vestuário e biotecnologia, entre outras. O aumento de produção e utilização de nanomateriais tem vindo a aumentar também a possibilidade de exposição humana a este tipo de partículas, levando a preocupações relativas ao risco de toxicidade aguda ou crónica. A exposição humana pode ocorrer por diversas vias, sendo as mais relevantes a via inalatória, ingestão ou contacto com a pele. Dependendo do material e do órgão-alvo, a exposição a nanomateriais pode conduzir a diferentes consequências biológicas: a nível dos órgãos, os nanomateriais podem levar a inflamação ou a supressão do sistema imunitário e, a nível celular e molecular, a perturbações na estrutura e integridade do genoma, assim como a interacções com moléculas biológicas e inibição da actividade proteica, entre outras consequências. Um dos nanomateriais mais utilizados são os nanotubos de carbono. Estes são constituídos por grafite cilíndrica disposta numa única camada (designados nanotubos de carbono de parede simples) ou em várias (nanotubos de carbono de parede múltipla). Os nanotubos de carbono apresentam propriedades como resistência e condutividade que os tornam muito úteis em aplicações como aparelhos electrónicos, vestuário ou biomedicina; cada vez mais, portanto, se torna provável a exposição ocupacional ou ambiental a este material. A semelhança estrutural destas partículas com fibras de amianto conduziu a questões relativas à sua segurança, pelo que já foram elaborados diversos estudos relativos aos seus efeitos biológicos. Alguns trabalhos sugerem que os nanotubos de carbono têm a capacidade de produzir toxicidade associada a lesões físicas, à produção de danos oxidativos por interacção com mecanismos celulares, ou a morte celular. Outros trabalhos defendem que estas partículas não causam toxicidade relevante. O projecto de dimensão europeia “NANoREG” surgiu da necessidade de ser desenvolvida legislação e regulamentação apoiadas em conhecimento científico e adequadas à produção e ao uso actual de nanomateriais. Este trabalho teve como objectivos principais a determinação do potencial cito- e genotóxico de um conjunto de nanotubos de carbono de parede múltipla (designados NM-400 a NM-403), e a consequente tentativa de associar este potencial às características físico-químicas dos nanomateriais. Com este objectivo, a exposição por via inalatória foi analisada, pelo uso de duas linhas celulares in vitro provenientes de tecidos do tracto respiratório: epitélio pulmonar (células A549) e epitélio brônquico (células BEAS-2B). A citotoxicidade dos nanotubos de carbono foi analisada com base em três parâmetros. Em primeiro lugar, as células foram contadas após a exposição aos nanomateriais utilizando o corante azul de tripanao para excluir as células inviáveis; a contagem foi realizada 3 e 24 horas após a exposição das células aos nanotubos. Os resultados deste ensaio apontam para a ausência de citotoxicidade após a exposição mais curta, e dados inconsistentes após a mais longa. Em segundo lugar, foi realizado o ensaio clonogénico, que se baseia na capacidade das células de se dividirem após a exposição ao agente em estudo. Este ensaio só foi realizado nas células A549 pois as BEAS-2B não permitem a formação de colónias. Os resultados apontam para uma citotoxicidade após a exposição a todos os nanomateriais, cuja intensidade se relaciona directamente com o tamanho das partículas, assim como ao seu diâmetro e área de superfície. Em terceiro lugar, foram calculados dois índices de viabilidade no ensaio dos Micronúcleos, cujo objectivo é avaliar se as células se dividiram durante a exposição aos nanomateriais em comparação com o controlo, e cujos resultados apresentam incoerências em relação aos outros já referidos. Estes dados podem ser justificados pelas diferenças existentes entre os ensaios, como o tempo de exposição ou a densidade celular. Os efeitos genotóxicos dos nanomateriais foram avaliados com recurso aos ensaios do cometa e dos micronúcleos. O primeiro detecta lesões pequenas e reversíveis nas cadeias de DNA, ao passo que o segundo detecta efeitos irreversíveis ao nível cromossómico, tais como quebras ou perdas de cromossomas. Os resultados do ensaio do cometa sugerem que nenhum dos nanomateriais testados é genotóxico, uma vez que em ambas as linhas celulares e em ambos os tempos de exposição, os resultados são negativos. O ensaio dos micronúcleos, por outro lado, aponta para existência de genotoxicidade de dois dos nanomateriais (NM-401 e NM-402) nas células A549, mas não em células BEAS-2B. Uma possível explicação para estes dados aparentemente contraditórios pode residir na hipótese de estes nanotubos de carbono serem compostos com efeitos aneugénicos, mas não clastogénicos: o ensaio dos micronúcleos permite a detecção de ambos os mecanismos de acção, ao passo que o ensaio do cometa só revela a quebra de cadeias de DNA. Outra justificação para os resultados é a possível influência da perda de viabilidade das células analisadas. Com base nos dados do ensaio clonogénico, estas partículas apresentam elevada citotoxicidade, pelo que os resultados dos ensaios de genotoxicidade, em particular do Ensaio do Cometa, poderão ser afectados por estes efeitos. O meio de cultura usado para expor as células aos nanomateriais também é um parâmetro muito relevante na sua toxicidade. Neste trabalho, foram usados meios de cultura com proteínas, que podem ser adsorvidas pelas partículas e formar uma “corona” em seu redor; este processo pode alterar propriedades importantes dos nanomateriais, entre os quais o seu potencial efeito biológico. Também o método usado para conseguir uma dispersão homogénea de nanomateriais pode conduzir a diferenças nos resultados dos ensaios de toxicidade. Neste estudo, foram observados alguns problemas relativos à perda de homogeneidade das dispersões de nanotubos de carbono, o que pode ter conduzido a que as células fossem expostas a massas de partículas de grandes dimensões conjuntamente com partículas individualizadas. O período durante o qual as células são expostas ao nanomaterial é também um aspecto essencial na produção de efeitos tóxicos. Resumindo, este projecto forneceu informações relativas à toxicidade dos nanotubos de carbono que, complementadas pelas conclusões dos restantes parceiros do projecto europeu, poderão contribuir significativamente para a avaliação de risco e criação de legislação relativamente à utilização de nanomateriais. Na linha celular BEAS-2B, nenhum destes nanomateriais parece produzir efeitos tóxicos, quer a nível de célula, quer a nível de genoma, nas condições experimentais utilizadas. Nas células A549, por outro lado, os três nanomateriais testados parecem ser acentuadamente citotóxicos, e dois deles (NM-401 e NM-402) são também genotóxicos. Em relação a perspectivas futuras, pode-se concluir que nem todos os ensaios de toxicidade existentes actualmente são adequados à análise de nanopartículas, pelo que novas metodologias devem ser desenvolvidas e complementadas por ensaios in vivo. Todos os estudos envolvendo nanomateriais deverão também descrever as características físico-químicas dos materiais usados, de forma a se poderem comparar os resultados com os de outros trabalhos.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest in the electronic properties of carbon nanotubes has increased in recent years. These materials can be used in the development of electrochemical sensors for the measurement and monitoring of analytes of environmental interest, such as pharmaceuticals, dyes, and pesticides. This work describes the use of homemade screen-printed electrodes modified with multi-walled carbon nanotubes (MWCNT) for the electrochemical detection of the fungicide thiram. The electrochemical characteristics of the proposed system were evaluated using cyclic voltammetry, with investigation of the electrochemical behavior of the sensor in the presence of the analyte, and estimation of electrochemical parameters including the diffusion coefficient, electron transfer coefficient (α), and number of electrons transferred in the catalytic electro-oxidation. The sensor response was optimized using amperometry. The best sensor performance was obtained in 0.1 mol L-1 phosphate buffer solution at pH 8.0, where a detection limit of 7.9 x 10-6 mol L-1 was achieved. Finally, in order to improve the sensitivity of the sensor, square wave voltammetry (SWV) was used for thiram quantification, instead of amperometry. Using SWV, a response range for thiram from 9.9 x 10-6 to 9.1 x 10-5 mol L-1 was obtained, with a sensitivity of 30948 µA mol L-1, and limits of detection and quantification of 1.6 x 10-6 and 5.4 x 10-6 mol L-1, respectively. The applicability of this efficient new alternative methodology for thiram detection was demonstrated using analyses of enriched soil samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aims of this study were (1) to synthesize and characterize random and aligned nanocomposite fibers of multi-walled carbon nanotubes (MWCNT)/nylon-6 and (2) to determine their reinforcing effects on the flexural strength of a dental resin composite.Nylon-6 was dissolved in hexafluoropropanol (10 wt%), followed by the addition of MWCNT (hereafter referred to as nanotubes) at two distinct concentrations (i.e., 0.5 or 1.5 wt%). Neat nylon-6 fibers (without nanotubes) were also prepared. The solutions were electrospun using parameters under low- (120 rpm) or high-speed (6000 rpm) mandrel rotation to collect random and aligned fibers, respectively. The processed fiber mats were characterized by scanning (SEM) and transmission (TEM) electron microscopies, as well as by uni-axial tensile testing. To determine the reinforcing effects on the flexural strength of a dental resin composite, bar-shaped (20 x 2 x 2 mm(3)) resin composite specimens were prepared by first placing one increment of the composite, followed by one strip of the mat, and one last increment of composite. Non-reinforced composite specimens were used as the control. The specimens were then evaluated using flexural strength testing. SEM was done on the fractured surfaces. The data were analyzed using ANOVA and the Tukey's test (alpha=5%).Nanotubes were successfully incorporated into the nylon-6 fibers. Aligned and random fibers were obtained using high- and low-speed electrospinning, respectively, where the former were significantly (p<0.001) stronger than the latter, regardless of the nanotubes'presence. Indeed, the dental resin composite tested was significantly reinforced when combined with nylon-6 fibrous mats composed of aligned fibers (with or without nanotubes) or random fibers incorporated with nanotubes at 0.5 wt%. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive electrochemical sensor was successfully developed on multi-walled carbon nanotubes (MWCNT) and cobalt phthalocyanine (CoPc) modified glassy carbon electrode (GC), and used to detect byproducts formed after the electrolysis of benzene. The GC/MWCNT/CoPc electrode was applied in the detection of phenolic compounds using square wave voltammetry (SWV). The proposed sensor exhibited a sequence in the sensitivity of the tested phenols: catechol > hydroquinone > resorcinol > phenol and 1,4-benzoquinone. The detection limits for individual phenols were also calculated: catechol (15.62 mu g L-1), hydroquinone (17.91 mu g L-1), resorcinol (46.12 mu g L-1), phenol (58.83 mu g L-1) and 1,4-benzoquinone (13.75 mu g L-1). The proposed sensor was successfully applied in the determination of the total amount of phenols formed after the benzene oxidation, and the obtained results were in full agreement with those from the HPLC procedure. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this project we developed conductive thermoplastic resins by adding varying amounts of three different carbon fillers: carbon black (CB), synthetic graphite (SG) and multi-walled carbon nanotubes (CNT) to a polypropylene matrix for application as fuel cell bipolar plates. This component of fuel cells provides mechanical support to the stack, circulates the gases that participate in the electrochemical reaction within the fuel cell and allows for removal of the excess heat from the system. The materials fabricated in this work were tested to determine their mechanical and thermal properties. These materials were produced by adding varying amounts of single carbon fillers to a polypropylene matrix (2.5 to 15 wt.% Ketjenblack EC-600 JD carbon black, 10 to 80 wt.% Asbury Carbon's Thermocarb TC-300 synthetic graphite, and 2.5 to 15 wt.% of Hyperion Catalysis International's FIBRILTM multi-walled carbon nanotubes) In addition, composite materials containing combinations of these three fillers were produced. The thermal conductivity results showed an increase in both through-plane and in-plane thermal conductivities, with the largest increase observed for synthetic graphite. The Department of Energy (DOE) had previously set a thermal conductivity goal of 20 W/m·K, which was surpassed by formulations containing 75 wt.% and 80 wt.% SG, yielding in-plane thermal conductivity values of 24.4 W/m·K and 33.6 W/m·K, respectively. In addition, composites containing 2.5 wt.% CB, 65 wt.% SG, and 6 wt.% CNT in PP had an in–plane thermal conductivity of 37 W/m·K. Flexural and tensile tests were conducted. All composite formulations exceeded the flexural strength target of 25 MPa set by DOE. The tensile and flexural modulus of the composites increased with higher concentration of carbon fillers. Carbon black and synthetic graphite caused a decrease in the tensile and flexural strengths of the composites. However, carbon nanotubes increased the composite tensile and flexural strengths. Mathematical models were applied to estimate through-plane and in-plane thermal conductivities of single and multiple filler formulations, and tensile modulus of single-filler formulations. For thermal conductivity, Nielsen's model yielded accurate thermal conductivity values when compared to experimental results obtained through the Flash method. For prediction of tensile modulus Nielsen's model yielded the smallest error between the predicted and experimental values. The second part of this project consisted of the development of a curriculum in Fuel Cell and Hydrogen Technologies to address different educational barriers identified by the Department of Energy. By the creation of new courses and enterprise programs in the areas of fuel cells and the use of hydrogen as an energy carrier, we introduced engineering students to the new technologies, policies and challenges present with this alternative energy. Feedback provided by students participating in these courses and enterprise programs indicate positive acceptance of the different educational tools. Results obtained from a survey applied to students after participating in these courses showed an increase in the knowledge and awareness of energy fundamentals, which indicates the modules developed in this project are effective in introducing students to alternative energy sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic investigation was performed on the hydrogen storage properties of mechano-chemically prepared MgH2/Single-walled carbon nanotube (SWNT) composites. It is found that the hydrogen absorption capacity and hydriding kinetics of the composites were dependent on the addition amount of SWNTs as well as milling time. A 5 wt.% addition of SVVNTs is optimum to facilitate the hydrogen absorption and desorption of MgH2. The composite MgH2/5 wt.% SWNTs milled for 10h can absorb 6.7 wt.% hydrogen within about 2 min at 573 K, and desorb 6 wt.% hydrogen in about 5 min at 623 K. Prolonging the milling time over 10 h leads to a serious degradation on hydrogen storage property of the MgH2/SWNT composite, and property/structure investigations suggest that the property degradation comes from the structure destruction of the SWNTs. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel carbon nanostructures can serve as effective storage media for methane, a source of clean energy for the future. We have used Grand Canonical Monte Carlo Simulation for the modeling of methane storage at 293 K and pressures up to 80 MPa in idealized bundles of (10,10) armchair-type single-walled carbon nanotubes and wormlike carbon pores. We have found that these carbon nanomaterials can be treated as the world's smallest high-capacity methane storage vessels. Our simulation results indicate that such novel carbon nanostructures can reach a high volumetric energy storage, exceeding the US FreedomCAR Partnership target of 2010 (5.4 MJ dm(-3)), at low to moderate pressures ranging from 1 to 7 MPa at 293 K. On the contrary, in the absence of these nanomaterials, methane needs to be compressed to approximately 13 MPa at 293 K to achieve the same target. The light carbon membranes composed of bundles of single-walled carbon nanotubes or wormlike pores efficiently physisorb methane at low to moderate pressures at 293 K, which we believe should be particularly important for automobiles and stationary devices. However, above 15-20 MPa at 293 K, all investigated samples of novel carbon nanomaterials are not as effective when compared with compression alone since the stored volumetric energy and power saturate at values below those of the bulk, compressed fluid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The highly efficient eco-friendly synthesis of ketones (yields over 99%) from secondary alcohols is achieved by combination of [FeCl2{eta(3)-HC(pz)(3)}] (pz = pyrazol-1-yl) supported on functionalized multi-walled carbon nanotubes and microwave irradiation, in a solvent-free medium. The carbon homoscorpionate iron(II) complex is the first one of this class to be used as catalyst for the oxidation of alcohols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiscale reinforcement, using carbon microfibers and multi-walled carbon nanotubes, of polymer matrix composites manufactured by twin-screw extrusion is investigated for enhanced mechanical and thermal properties with an emphasis on the use of a diverging flow in the die for fluid mechanical fiber manipulation. Using fillers at different length scales (microscale and nanoscale), synergistic combinations have been identified to produce distinct mechanical and thermal behavior. Fiber manipulation has been demonstrated experimentally and computationally, and has been shown to enhance thermal conductivity significantly. Finally, a new physics driven predictive model for thermal conductivity has been developed based on fiber orientation during flow, which is shown to successfully capture composite thermal conductivity.