932 resultados para moment closure
Self-efficacy, outcome expectations and self-care behaviour in people with type 2 diabetes in Taiwan
Resumo:
Aims. To explore differences in self-care behaviour according to demographic and illness characteristics; and relationships among self-care behaviour and demographic and illness characteristics, efficacy expectations and outcome expectations of people with type 2 diabetes in Taiwan. Background. Most people with diabetes do not control their disease appropriately in Taiwan. Enhanced self-efficacy towards managing diseases can be an effective way of improving disease control as proposed by the self-efficacy model which provides a useful framework for understanding adherence to self-care behaviours. Design and methods. The sample comprised 145 patients with type 2 diabetes aged 30 years or more from diabetes outpatient clinics in Taipei. Data were collected using a self-administered questionnaire for this study. One-way anova, t-tests, Pearson product moment correlation and hierarchical regression were analysed for the study. Results. Significant differences were found: between self-care behaviour and complications (t = −2·52, p < 0·01) and patient education (t = −1·96, p < 0·05). Self-care behaviour was significantly and positively correlated with duration of diabetes (r = 0·36, p < 0·01), efficacy expectations (r = 0·54, p < 0·01) and outcome expectations (r = 0·44, p < 0·01). A total of 39·1% of variance in self-care behaviour can be explained by duration of diabetes, efficacy expectations and outcome expectations. Conclusions. Findings support the use of the self-efficacy model as a framework for understanding adherence to self-care behaviour. Relevance to clinical practice. Using self-efficacy theory when designing patient education interventions for people with type 2 diabetes will enhance self-management routines and assist in reducing major complications in the future.
Resumo:
Patent systems around the world are being pressed to recognise and protect challengingly new and exciting subject matter in order to keep pace with the rapid technological advancement of our age and the fact we are moving into the era of the ‘knowledge economy’. This rapid development and pressure to expand the bounds of what has traditionally been recognised as patentable subject matter has created uncertainty regarding what it is that the patent system is actually supposed to protect. Among other things, the patent system has had to contend with uncertainty surrounding claims to horticultural and agricultural methods, artificial living micro-organisms, methods of treating the human body, computer software and business methods. The contentious issue of the moment is one at whose heart lies the important distinction between what is a mere abstract idea and what is properly an invention deserving of the monopoly protection afforded by a patent. That question is whether purely intangible inventions, being methods that do not involve a physical aspect or effect or cause a physical transformation of matter, constitute patentable subject matter. This paper goes some way to addressing these uncertainties by considering how the Australian approach to the question can be informed by developments arising in the United States of America, and canvassing some of the possible lessons we in Australia might learn from the approaches taken thus far in the United States.
Resumo:
The performance of an adaptive filter may be studied through the behaviour of the optimal and adaptive coefficients in a given environment. This thesis investigates the performance of finite impulse response adaptive lattice filters for two classes of input signals: (a) frequency modulated signals with polynomial phases of order p in complex Gaussian white noise (as nonstationary signals), and (b) the impulsive autoregressive processes with alpha-stable distributions (as non-Gaussian signals). Initially, an overview is given for linear prediction and adaptive filtering. The convergence and tracking properties of the stochastic gradient algorithms are discussed for stationary and nonstationary input signals. It is explained that the stochastic gradient lattice algorithm has many advantages over the least-mean square algorithm. Some of these advantages are having a modular structure, easy-guaranteed stability, less sensitivity to the eigenvalue spread of the input autocorrelation matrix, and easy quantization of filter coefficients (normally called reflection coefficients). We then characterize the performance of the stochastic gradient lattice algorithm for the frequency modulated signals through the optimal and adaptive lattice reflection coefficients. This is a difficult task due to the nonlinear dependence of the adaptive reflection coefficients on the preceding stages and the input signal. To ease the derivations, we assume that reflection coefficients of each stage are independent of the inputs to that stage. Then the optimal lattice filter is derived for the frequency modulated signals. This is performed by computing the optimal values of residual errors, reflection coefficients, and recovery errors. Next, we show the tracking behaviour of adaptive reflection coefficients for frequency modulated signals. This is carried out by computing the tracking model of these coefficients for the stochastic gradient lattice algorithm in average. The second-order convergence of the adaptive coefficients is investigated by modeling the theoretical asymptotic variance of the gradient noise at each stage. The accuracy of the analytical results is verified by computer simulations. Using the previous analytical results, we show a new property, the polynomial order reducing property of adaptive lattice filters. This property may be used to reduce the order of the polynomial phase of input frequency modulated signals. Considering two examples, we show how this property may be used in processing frequency modulated signals. In the first example, a detection procedure in carried out on a frequency modulated signal with a second-order polynomial phase in complex Gaussian white noise. We showed that using this technique a better probability of detection is obtained for the reduced-order phase signals compared to that of the traditional energy detector. Also, it is empirically shown that the distribution of the gradient noise in the first adaptive reflection coefficients approximates the Gaussian law. In the second example, the instantaneous frequency of the same observed signal is estimated. We show that by using this technique a lower mean square error is achieved for the estimated frequencies at high signal-to-noise ratios in comparison to that of the adaptive line enhancer. The performance of adaptive lattice filters is then investigated for the second type of input signals, i.e., impulsive autoregressive processes with alpha-stable distributions . The concept of alpha-stable distributions is first introduced. We discuss that the stochastic gradient algorithm which performs desirable results for finite variance input signals (like frequency modulated signals in noise) does not perform a fast convergence for infinite variance stable processes (due to using the minimum mean-square error criterion). To deal with such problems, the concept of minimum dispersion criterion, fractional lower order moments, and recently-developed algorithms for stable processes are introduced. We then study the possibility of using the lattice structure for impulsive stable processes. Accordingly, two new algorithms including the least-mean P-norm lattice algorithm and its normalized version are proposed for lattice filters based on the fractional lower order moments. Simulation results show that using the proposed algorithms, faster convergence speeds are achieved for parameters estimation of autoregressive stable processes with low to moderate degrees of impulsiveness in comparison to many other algorithms. Also, we discuss the effect of impulsiveness of stable processes on generating some misalignment between the estimated parameters and the true values. Due to the infinite variance of stable processes, the performance of the proposed algorithms is only investigated using extensive computer simulations.
Resumo:
LiteSteel Beam (LSB) is a new cold-formed steel beam produced by OneSteel Australian Tube Mills. The new beam is effectively a channel section with two rectangular hollow flanges and a slender web, and is manufactured using a combined cold-forming and electric resistance welding process. OneSteel Australian Tube Mills is promoting the use of LSBs as flexural members in a range of applications, such as floor bearers. When LSBs are used as back to back built-up sections, they are likely to improve their moment capacity and thus extend their applications further. However, the structural behaviour of built-up beams is not well understood. Many steel design codes include guidelines for connecting two channels to form a built-up I-section including the required longitudinal spacing of connections. But these rules were found to be inadequate in some applications. Currently the safe spans of builtup beams are determined based on twice the moment capacity of a single section. Research has shown that these guidelines are conservative. Therefore large scale lateral buckling tests and advanced numerical analyses were undertaken to investigate the flexural behaviour of back to back LSBs connected by fasteners (bolts) at various longitudinal spacings under uniform moment conditions. In this research an experimental investigation was first undertaken to study the flexural behaviour of back to back LSBs including its buckling characteristics. This experimental study included tensile coupon tests, initial geometric imperfection measurements and lateral buckling tests. The initial geometric imperfection measurements taken on several back to back LSB specimens showed that the back to back bolting process is not likely to alter the imperfections, and the measured imperfections are well below the fabrication tolerance limits. Twelve large scale lateral buckling tests were conducted to investigate the behaviour of back to back built-up LSBs with various longitudinal fastener spacings under uniform moment conditions. Tests also included two single LSB specimens. Test results showed that the back to back LSBs gave higher moment capacities in comparison with single LSBs, and the fastener spacing influenced the ultimate moment capacities. As the fastener spacing was reduced the ultimate moment capacities of back to back LSBs increased. Finite element models of back to back LSBs with varying fastener spacings were then developed to conduct a detailed parametric study on the flexural behaviour of back to back built-up LSBs. Two finite element models were developed, namely experimental and ideal finite element models. The models included the complex contact behaviour between LSB web elements and intermittently fastened bolted connections along the web elements. They were validated by comparing their results with experimental results and numerical results obtained from an established buckling analysis program called THIN-WALL. These comparisons showed that the developed models could accurately predict both the elastic lateral distortional buckling moments and the non-linear ultimate moment capacities of back to back LSBs. Therefore the ideal finite element models incorporating ideal simply supported boundary conditions and uniform moment conditions were used in a detailed parametric study on the flexural behaviour of back to back LSB members. In the detailed parametric study, both elastic buckling and nonlinear analyses of back to back LSBs were conducted for 13 LSB sections with varying spans and fastener spacings. Finite element analysis results confirmed that the current design rules in AS/NZS 4600 (SA, 2005) are very conservative while the new design rules developed by Anapayan and Mahendran (2009a) for single LSB members were also found to be conservative. Thus new member capacity design rules were developed for back to back LSB members as a function of non-dimensional member slenderness. New empirical equations were also developed to aid in the calculation of elastic lateral distortional buckling moments of intermittently fastened back to back LSBs. Design guidelines were developed for the maximum fastener spacing of back to back LSBs in order to optimise the use of fasteners. A closer fastener spacing of span/6 was recommended for intermediate spans and some long spans where the influence of fastener spacing was found to be high. In the last phase of this research, a detailed investigation was conducted to investigate the potential use of different types of connections and stiffeners in improving the flexural strength of back to back LSB members. It was found that using transverse web stiffeners was the most cost-effective and simple strengthening method. It is recommended that web stiffeners are used at the supports and every third points within the span, and their thickness is in the range of 3 to 5 mm depending on the size of LSB section. The use of web stiffeners eliminated most of the lateral distortional buckling effects and hence improved the ultimate moment capacities. A suitable design equation was developed to calculate the elastic lateral buckling moments of back to back LSBs with the above recommended web stiffener configuration while the same design rules developed for unstiffened back to back LSBs were recommended to calculate the ultimate moment capacities.
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange channel section developed by OneSteel Australian Tube Mills using a patented Dual Electric Resistance Welding technique. The LSB has a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. It is commonly used as rafters, floor joists and bearers and roof beams in residential, industrial and commercial buildings. It is on average 40% lighter than traditional hot-rolled steel beams of equivalent performance. The LSB flexural members are subjected to a relatively new Lateral Distortional Buckling mode, which reduces the member moment capacity. Unlike the commonly observed lateral torsional buckling of steel beams, lateral distortional buckling of LSBs is characterised by simultaneous lateral deflection, twist and web distortion. Current member moment capacity design rules for lateral distortional buckling in AS/NZS 4600 (SA, 2005) do not include the effect of section geometry of hollow flange beams although its effect is considered to be important. Therefore detailed experimental and finite element analyses (FEA) were carried out to investigate the lateral distortional buckling behaviour of LSBs including the effect of section geometry. The results showed that the current design rules in AS/NZS 4600 (SA, 2005) are over-conservative in the inelastic lateral buckling region. New improved design rules were therefore developed for LSBs based on both FEA and experimental results. A geometrical parameter (K) defined as the ratio of the flange torsional rigidity to the major axis flexural rigidity of the web (GJf/EIxweb) was identified as the critical parameter affecting the lateral distortional buckling of hollow flange beams. The effect of section geometry was then included in the new design rules using the new parameter (K). The new design rule developed by including this parameter was found to be accurate in calculating the member moment capacities of not only LSBs, but also other types of hollow flange steel beams such as Hollow Flange Beams (HFBs), Monosymmetric Hollow Flange Beams (MHFBs) and Rectangular Hollow Flange Beams (RHFBs). The inelastic reserve bending capacity of LSBs has not been investigated yet although the section moment capacity tests of LSBs in the past revealed that inelastic reserve bending capacity is present in LSBs. However, the Australian and American cold-formed steel design codes limit them to the first yield moment. Therefore both experimental and FEA were carried out to investigate the section moment capacity behaviour of LSBs. A comparison of the section moment capacity results from FEA, experiments and current cold-formed steel design codes showed that compact and non-compact LSB sections classified based on AS 4100 (SA, 1998) have some inelastic reserve capacity while slender LSBs do not have any inelastic reserve capacity beyond their first yield moment. It was found that Shifferaw and Schafer’s (2008) proposed equations and Eurocode 3 Part 1.3 (ECS, 2006) design equations can be used to include the inelastic bending capacities of compact and non-compact LSBs in design. As a simple design approach, the section moment capacity of compact LSB sections can be taken as 1.10 times their first yield moment while it is the first yield moment for non-compact sections. For slender LSB sections, current cold-formed steel codes can be used to predict their section moment capacities. It was believed that the use of transverse web stiffeners could improve the lateral distortional buckling moment capacities of LSBs. However, currently there are no design equations to predict the elastic lateral distortional buckling and member moment capacities of LSBs with web stiffeners under uniform moment conditions. Therefore, a detailed study was conducted using FEA to simulate both experimental and ideal conditions of LSB flexural members. It was shown that the use of 3 to 5 mm steel plate stiffeners welded or screwed to the inner faces of the top and bottom flanges of LSBs at third span points and supports provided an optimum web stiffener arrangement. Suitable design rules were developed to calculate the improved elastic buckling and ultimate moment capacities of LSBs with these optimum web stiffeners. A design rule using the geometrical parameter K was also developed to improve the accuracy of ultimate moment capacity predictions. This thesis presents the details and results of the experimental and numerical studies of the section and member moment capacities of LSBs conducted in this research. It includes the recommendations made regarding the accuracy of current design rules as well as the new design rules for lateral distortional buckling. The new design rules include the effects of section geometry of hollow flange steel beams. This thesis also developed a method of using web stiffeners to reduce the lateral distortional buckling effects, and associated design rules to calculate the improved moment capacities.
Resumo:
The closure of large institutions for people with intellectual disability and the subsequent shift to community living has been a feature of social policies in most western democracies for more than two decades. While the move from congregated settings to homes in the community has been heralded as a positive and desirable strategy, deinstitutionalisation has continued to be a controversial policy and practice. This research critically analyses the implementation of a deinstitutionalisation policy called Institutional Reform in the state of Queensland from May 1994 until it was dismantled under a new government in the middle of 1996. A trajectory study of the policy from early conceptualisation through its development, implementation and final extinction was undertaken. Several methods were utilised in the research including the textual analyis of policy documents, discussion papers and newspaper articles, interviews with stakeholders and participant observation. The research draws on theories of discourse and focuses on how discourses of disability shape policy and practice. The thesis outlines a number of implications for policy implementation more generally as well as for disability services. In particular, the theoretical framework builds on Fulcher's (1989) disabling discourses - medical, charity, lay and rights - and identifies two additional discourses of economics and inclusion. The thesis argues that competing disability discourses operated in powerful ways to shape the implementation of the policy and illustrates how older discourses based on fear and prejudice were promoted to positions of dominance and power.
Resumo:
Radioactive wastes are by-products of the use of radiation technologies. As with many technologies, the wastes are required to be disposed of in a safe manner so as to minimise risk to human health. This study examines the requirements for a hypothetical repository and develops techniques for decision making to permit the establishment of a shallow ground burial facility to receive an inventory of low-level radioactive wastes. Australia’s overall inventory is used as an example. Essential and desirable siting criteria are developed and applied to Australia's Northern Territory resulting in the selection of three candidate sites for laboratory investigations into soil behaviour. The essential quantifiable factors which govern radionuclide migration and ultimately influence radiation doses following facility closure are reviewed. Simplified batch and column procedures were developed to enable laboratory determination of distribution and retardation coefficient values for use in one-dimensional advection-dispersion transport equations. Batch and column experiments were conducted with Australian soils sampled from the three identified candidate sites using a radionuclide representative of the current national low-level radioactive waste inventory. The experimental results are discussed and site soil performance compared. The experimental results are subsequently used to compare the relative radiation health risks between each of the three sites investigated. A recommendation is made as to the preferred site to construct an engineered near-surface burial facility to receive the Australian low-level radioactive waste inventory.
Resumo:
In order to effect permanent closure in burns patients suffering from full thickness wounds, replacing their skin via split thickness autografting, is essential. Dermal substitutes in conjunction with widely meshed split thickness autografts (+/- cultured keratinocytes) reduce scarring at the donor and recipient sites of burns patients by reducing demand for autologous skin (both surface area and thickness), without compromising dermal delivery at the wound face. Tissue engineered products such as Integra consist of a dermal template which is rapidly remodelled to form a neodermis, at which time the temporary silicone outer layer is removed and replaced with autologous split thickness skin. Whilst provision of a thick tissue engineered dermis at full thickness burn sites reduces scarring, it is hampered by delays in vascularisation which results in clinical failure. The ultimate success of any skin graft product is dependent upon a number of basic factors including adherence, haemostasis and in the case of viable tissue grafts, success is ultimately dependent upon restoration of a normal blood supply, and hence this study. Ultimately, the goal of this research is to improve the therapeutic properties of tissue replacements, through impregnation with growth factors aimed at stimulating migration and proliferation of microvascular endothelial cells into the donor tissue post grafting. For the purpose of my masters, the aim was to evaluate the responsiveness of a dermal microvascular endothelial cell line to growth factors and haemostatic factors, in the presence of the glycoprotein vitronectin. Vitronectin formed the backbone for my hypothesis and research due to its association with both epithelial and, more specifically, endothelial migration and proliferation. Early work using a platform technology referred to as VitroGro (Tissue Therapies Ltd), which is comprised of vitronectin bound BP5/IGF-1, aided keratinocyte proliferation. I hypothesised that this result would translate to another epithelium - endothelium. VitroGro had no effect on endothelial proliferation or migration. Vitronectin increases the presence of Fibroblast Growth Factor (FGF) and Vascular Endothelial Growth Factor (VEGF) receptors, enhancing cell responsiveness to their respective ligands. So, although Human Microvascular Endothelial Cell line 1 (HMEC-1) VEGF receptor expression is generally low, it was hypothesised that exposure to vitronectin would up-regulate this receptor. HMEC-1 migration, but not proliferation, was enhanced by vitronectin bound VEGF, as well as vitronectin bound Epidermal Growth Factor (EGF), both of which could be used to stimulate microvascular endothelial cell migration for the purpose of transplantation. In addition to vitronectin's synergy with various growth factors, it has also been shown to play a role in haemostasis. Vitronectin binds thrombin-antithrombin III (TAT) to form a trimeric complex that takes on many of the attributes of vitronectin, such as heparin affinity, which results in its adherence to endothelium via heparan sulfate proteoglycans (HSP), followed by unaltered transcytosis through the endothelium, and ultimately its removal from the circulation. This has been documented as a mechanism designed to remove thrombin from the circulation. Equally, it could be argued that it is a mechanism for delivering vitronectin to the matrix. My results show that matrix-bound vitronectin dramatically alters the effect that conformationally altered antithrombin three (cATIII) has on proliferation of microvascular endothelial cells. cATIII stimulates HMEC-1 proliferation in the presence of matrix-bound vitronectin, as opposed to inhibiting proliferation in its absence. Binding vitronectin to tissues and organs prior to transplant, in the presence of cATIII, will have a profound effect on microvascular infiltration of the graft, by preventing occlusion of existing vessels whilst stimulating migration and proliferation of endothelium within the tissue.
Resumo:
Mindfulness is a concept which has been widely used in studies on consciousness, but has recently been applied to the understanding of behaviours in other areas, including clinical psychology, meditation, physical activity, education and business. It has been suggested that mindfulness can also be applied to road safety, though this has not yet been researched. A standard definition of mindfulness is “paying attention in a particular way, on purpose in the present moment and non-judgemental to the unfolding of experience moment by moment” [1]. Scales have been developed to measure mindfulness; however, there are different views in the literature on the nature of the mindfulness construct. This paper reviews the issues raised in the literature and arrives at an operational definition of mindfulness considered relevant to road safety. It is further proposed that mindfulness is best construed as operating together with other psychosocial factors to influence road safety behaviours. The specific case of speeding behaviour is outlined, where the psychosocial variables in the Theory of Planned Behaviour (TPB) have been demonstrated to predict both intention to speed and actual speeding behaviour. A role is proposed for mindfulness in enhancing the explanatory and predictive powers of the TPB concerning speeding. The implications of mindfulness for speeding countermeasures are discussed and a program of future research is outlined.
Resumo:
The intimacy and eroticism of the actor’s relationship with the audience is captured in the ecstatic revelation of the actor “being in the moment.” Drawing on the theories of Freud and Sartre and twenty years of performance praxis, this paper explores the exchange of erotic discourse between stage and spectator that not only heightens the experience of the liveness of theatre, but creates a symbiosis that is silently negotiated, agreed upon and sensuously performed during the suspended timeframe of the theatrical event. The actor draws the audience into the erotic transaction through various dramatic devices: the seduction of the soliloquy, the somatic and verbal discourses, the sensuality of light and costuming. The audience responds with its own paralingual and verbal foreplay: the playfulness of laughter, the slapping of hands and, most significantly, the gaze. While the gaze is often perceived as a form of voyeurism, this paper argues that the gaze of consensual agreement between audience and actor can work to unmask inhibitions enabling the actor to create the truth of the moment in complete abandon.
Resumo:
This paper describes a process for evolving a stable humanoid walking gait that is based around parameterised loci of motion. The parameters of the loci are chosen by an evolutionary process based on the criteria that the robot's ZMP (zero moment point) follows a desirable path. The paper illustrates the evolution of a straight line walking gait. The gait has been tested on a 1.2 m tall humanoid robot (GuRoo). The results, apart form illustrating a successful walk, illustrate the effectiveness of the ZMP path criterion in not only ensuring a stable walk, but also in achieving efficient use of the actuators.
Resumo:
This thesis addresses the problem of detecting and describing the same scene points in different wide-angle images taken by the same camera at different viewpoints. This is a core competency of many vision-based localisation tasks including visual odometry and visual place recognition. Wide-angle cameras have a large field of view that can exceed a full hemisphere, and the images they produce contain severe radial distortion. When compared to traditional narrow field of view perspective cameras, more accurate estimates of camera egomotion can be found using the images obtained with wide-angle cameras. The ability to accurately estimate camera egomotion is a fundamental primitive of visual odometry, and this is one of the reasons for the increased popularity in the use of wide-angle cameras for this task. Their large field of view also enables them to capture images of the same regions in a scene taken at very different viewpoints, and this makes them suited for visual place recognition. However, the ability to estimate the camera egomotion and recognise the same scene in two different images is dependent on the ability to reliably detect and describe the same scene points, or ‘keypoints’, in the images. Most algorithms used for this purpose are designed almost exclusively for perspective images. Applying algorithms designed for perspective images directly to wide-angle images is problematic as no account is made for the image distortion. The primary contribution of this thesis is the development of two novel keypoint detectors, and a method of keypoint description, designed for wide-angle images. Both reformulate the Scale- Invariant Feature Transform (SIFT) as an image processing operation on the sphere. As the image captured by any central projection wide-angle camera can be mapped to the sphere, applying these variants to an image on the sphere enables keypoints to be detected in a manner that is invariant to image distortion. Each of the variants is required to find the scale-space representation of an image on the sphere, and they differ in the approaches they used to do this. Extensive experiments using real and synthetically generated wide-angle images are used to validate the two new keypoint detectors and the method of keypoint description. The best of these two new keypoint detectors is applied to vision based localisation tasks including visual odometry and visual place recognition using outdoor wide-angle image sequences. As part of this work, the effect of keypoint coordinate selection on the accuracy of egomotion estimates using the Direct Linear Transform (DLT) is investigated, and a simple weighting scheme is proposed which attempts to account for the uncertainty of keypoint positions during detection. A word reliability metric is also developed for use within a visual ‘bag of words’ approach to place recognition.
Resumo:
Camera calibration information is required in order for multiple camera networks to deliver more than the sum of many single camera systems. Methods exist for manually calibrating cameras with high accuracy. Manually calibrating networks with many cameras is, however, time consuming, expensive and impractical for networks that undergo frequent change. For this reason, automatic calibration techniques have been vigorously researched in recent years. Fully automatic calibration methods depend on the ability to automatically find point correspondences between overlapping views. In typical camera networks, cameras are placed far apart to maximise coverage. This is referred to as a wide base-line scenario. Finding sufficient correspondences for camera calibration in wide base-line scenarios presents a significant challenge. This thesis focuses on developing more effective and efficient techniques for finding correspondences in uncalibrated, wide baseline, multiple-camera scenarios. The project consists of two major areas of work. The first is the development of more effective and efficient view covariant local feature extractors. The second area involves finding methods to extract scene information using the information contained in a limited set of matched affine features. Several novel affine adaptation techniques for salient features have been developed. A method is presented for efficiently computing the discrete scale space primal sketch of local image features. A scale selection method was implemented that makes use of the primal sketch. The primal sketch-based scale selection method has several advantages over the existing methods. It allows greater freedom in how the scale space is sampled, enables more accurate scale selection, is more effective at combining different functions for spatial position and scale selection, and leads to greater computational efficiency. Existing affine adaptation methods make use of the second moment matrix to estimate the local affine shape of local image features. In this thesis, it is shown that the Hessian matrix can be used in a similar way to estimate local feature shape. The Hessian matrix is effective for estimating the shape of blob-like structures, but is less effective for corner structures. It is simpler to compute than the second moment matrix, leading to a significant reduction in computational cost. A wide baseline dense correspondence extraction system, called WiDense, is presented in this thesis. It allows the extraction of large numbers of additional accurate correspondences, given only a few initial putative correspondences. It consists of the following algorithms: An affine region alignment algorithm that ensures accurate alignment between matched features; A method for extracting more matches in the vicinity of a matched pair of affine features, using the alignment information contained in the match; An algorithm for extracting large numbers of highly accurate point correspondences from an aligned pair of feature regions. Experiments show that the correspondences generated by the WiDense system improves the success rate of computing the epipolar geometry of very widely separated views. This new method is successful in many cases where the features produced by the best wide baseline matching algorithms are insufficient for computing the scene geometry.
Resumo:
Background: The “Curriculum renewal in legal education” project has been funded by the Australian Learning and Teaching Council with the core objectives being the articulation of a set of final year curriculum design principles, and the development of a model of a transferable final year program. Through these principles and the development of the model, it is anticipated that the final year experience for law students will provide greater opportunity for them to understand the relevance of their learning, and will enhance their capacity to make decisions regarding their career path. Discussion / Argument: This paper reports on the project’s progress to date, and presents an argument for the inclusion of work integrated learning (WIL) as a component of the final year experience in undergraduate law programs. The project has identified that the two principal objectives of capstone experiences are to provide closure and to facilitate transition to post-university life. Reflective practice and Bruner’s spiral curriculum model are the central theoretical foundations by which these objectives can be achieved. Experiential learning is also increasingly seen as an essential element of a capstone experience. WIL is consistent with the objectives of capstones in focusing on the transition to professional practice and providing opportunities for reflection. However, the ability of WIL to meet all of the objectives of capstones, particularly closure and integration, may be limited. Conclusions / Implications: The paper posits that while WIL should be considered as a potential component of a capstone experience, educators should ensure that WIL is not equated with a capstone experience unless it is carefully designed to ensure that all of the objectives of capstones are met. Keywords: Work-integrated learning, capstone, final year experience, law