951 resultados para mixed monotone property


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recent poor performance of the equity market in the UK has meant that real estate is increasingly been seen as an attractive addition to the mixed-asset portfolio. However, determining whether the good return enjoyed by real estate is a temporary or long-term phenomenon is a question that remains largely unanswered. In other words, there is little or no evidence to indicate whether real estate should play a consistent role in the mixed-asset portfolio over short- and long-term investment horizons. Consistency in this context refers to the ability of an asset to maintain a positive allocation in an efficient portfolio over different holding periods. Such consistency is a desirable trait for any investment, but takes on particular significance when real estate is considered, as the asset class is generally perceived to be a long-term investment due to illiquidity. From an institutional investor’s perspective, it is therefore crucial to determine whether real estate can be reasonably expected to maintain a consistent allocation in the mixed-asset portfolio in both the short and long run and at what percentage. To address the question of consistency the allocation of real estate in the mixed-asset portfolio was calculated over different holding periods varying from 5- to 25-years.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The basic assumption from implicit self-tuning theory is that, for self tuning to occur, the control input obtained from the estimated system model converges to the value whic would be obtained if the system parameters were known. As as direct result of this, only certain control strategies are acceptable. Here a general rule for the self-tuning property of pole-placement self tuners is obtained, and previous strategies are shown to be special cases of this.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investments in direct real estate are inherently difficult to segment compared to other asset classes due to the complex and heterogeneous nature of the asset. The most common segmentation in real estate investment analysis relies on property sector and geographical region. In this paper, we compare the predictive power of existing industry classifications with a new type of segmentation using cluster analysis on a number of relevant property attributes including the equivalent yield and size of the property as well as information on lease terms, number of tenants and tenant concentration. The new segments are shown to be distinct and relatively stable over time. In a second stage of the analysis, we test whether the newly generated segments are able to better predict the resulting financial performance of the assets than the old dichotomous segments. Applying both discriminant and neural network analysis we find mixed evidence for this hypothesis. Overall, we conclude from our analysis that each of the two approaches to segmenting the market has its strengths and weaknesses so that both might be applied gainfully in real estate investment analysis and fund management.